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Chapter 1

On generalized metric spaces and
open problems

1.1 On Fréchet Mjs-spaces

We introduce property () into Mz-spaces and show that every closed subset of an
Mj;-space with this property has a closure-preserving open neighborhood base in X,
and consequently such space is an M;-space. This answers positively to the problem

posed by Tamano whether Frechet Ms-spaces are M;.

1.1.1 Introduction.

Ceder defined class of M;-spaces for 1=1,2,3 and proved that M; — M; — Mas,
[Ced61]. He asked there whether the reverses hold. Gruenhage [Gru76] and Jun-
nila [Jun78] independently proved My,=Mj. Borges renamed Mg-spaces stratifiable
ones and studied their properties [Bor66]. Thus, the problem whether My implies
M; remains unsolved and it is one of the most outstanding open problems in general
topology.

For this problem, we have the partial answers one of which is due to Tamano
[Tam89], where he proved that every Baire, Fréchet, Ms-space is M;. The proof is
the modification of Tto’s discussion in [Ito85], which also gives the partial answer to
this problem.

In this section, we define property () which is weaker than Fréchet property,

and prove that every Ms-space with property (*) is My; more strongly, every closed



subset of it has a closure-preserving open neighborhood base in it. This gives the
positive answer to the problem whether every Fréchet Ma-space is M; posed by
Tamano [Tam89, Problem 3.6].

Throughout this section, we assume that all spaces are Ms-spaces. Letter N
always denotes the set of natural numbers. For a space X, we denote the topology
of X by 7(X). For any subset A of X, 0A denotes the boundary of A in X. A
family W of subsets of X is called a (closed, open) neighborhood base of a subset A
of X in X if W consists of (closed, open, respectively) neighborhoods of A in X and
ifACcU € 7(X),then ACc W C U for some W € W. For brevity, let the capital
letter CP stand for “closure-preserving”.

The definitions of M;-spaces and others are referred to the original papers [Ced61,
Bor66] and their summation [Gru84]. We state the well-known properties of Mjz-

spaces:

Fact 1.1.1 ([Ced61, Lemma 7.3]). Each closed subset of a space X has a CP

closed neighborhood base in X.

Fact 1.1.2 ([Gru84, Theorem 5.16]). A space X has a monotonical normality
operator [D which assigns an open subset D(H, K) to each pair of disjoint closed

subsets of X such that
() HC D(H,K) C D(H,K)~ C X\K;
(ii) if H ¢ H and K’ C K, then
D(H,K) c D(H', K").
Fact 1.1.3 ([Gru84, Theorem 5.27]). A space X has the stratification
S : {closed subsets of X} x N — 7(X) satisfies the following:
(i) For each closed H, H = ({S(H,n)|n € N} = N{S(H,n)"|n € N};

(i) if H € H', then S(H,n) C S(H',n) for each n;



(iii) for each closed subset F' of X and n € N, S(F,n+ 1)~ C S(F,n).

(This is not included in the original definition, but the modification is easy.)

Fact 1.1.4 ([SN68]). Let B be a CP family of closed subsets of a space X. Then

there exists a set {F,V} of families of X satisfying the following:

(i) F = |J{Fuln € N} is a cover of X, where each F,, is a discrete family of closed

subsets of X;

(ii) V = {V(F)|F € F} is an open cover of X such that ' C V(F') for each F € F

and for each n, {V(F)|F € F,} discrete in X;

(iii) foreach F € Fand Be B, FNB # Qifand only if F C B, and if FNB = 0,

then V(F)N B = 0.
We call F the mosaic on B and V the fril of F in X.

The next fact follows from Lemma 1.1.7 later as the special case:

Fact 1.1.5. Let B be a CP family of closed subsets of a space X. Then there exists

a set {W(B)|B € B} of families of X satisfying the following:
(1) U{W(B)|B € B} is a CP family of closed subsets of X;
(i) each W(B) is a closed neighborhood base of B in X.

1.1.2 Lemmas.

Lemma 1.1.6. Let M be a closed subset of a space X. Then there exists a mapping

T :7(X) — 7(X) satisfying the following:
(i) For each O € 7(X), T(O)NM =0NM and T(O)~ N(X\M) C O;
(11) ’Lf 01,02 € T(X) and O] C 02, then T(Ol) - T(Og)

Proof. Let D,S be the monotonical normality operator, the stratification of X,

respectively. For each O € 7(X), define

7(0) = | AD(M\S(X\O,n), X\(O N S(M,n)))|n € N}.



Then it is easily checked that {T(O)|O € 7(X)} satisfies the conditions (i) and
(ii). O

We call T the Li-operator with respect to M in X.

Lemma 1.1.7. Let M be a closed subset of a space X. Let B be a CP family
of closed subsets of X. Then there exists a set {W(B)|B € B} of families of X

satisfying the following:
(i) U{WV(B)|B € B} is a CP family of closed subsets of X;

(i) for each B € B, W(B)|M = {BN M} and W(B)|(X\M) is a closed neigh-
borhood base of BN (X\M) in X\M.

Proof. Let F' be the mosaic on BU{M} and F the subfamily such that
F={FeF|FnM =0}

Note that F is the mosaic on B|(X\M). Let F = | J{Fn|n € N}, where each F, is
a discrete family of closed subsets of X. Let {V(F)|F € F'} be the frill of 7' in X

such that for each F € F,,, n € N,
F CcV(F)CS(F,n).

By Fact 1.1.1, there exists a CP closed neighborhood base B(F') of I in X such that

UB(F) C V(F). To construct W(B), B € B, let

F(B)={F € FIF C B}

AB) = {6 = (B(P) € [[{B()IF € F(B)}
W(6) = | J{B(F)|F € F(B)} satisfies W(§) N T(X\B)~ = (b}



where T is the Lj-operator with respect to M in X. Note that W(6) is a neighbor-

hood of BN (X\M) in X\M for each 6 € A(B). If we define
W(B) = {BUW()|6 € A(B)}, B € B,

then we can show that {WW(B)|B € B} has the required properties. (ii) is easily
checked. To see (i), let By C B and let Wy(B) C W(B) for each B € By. Suppose
p & U{W- ] W e {Wu(B)|B € By}}. Take n € N such that p & S(|JBo,n)
Note that [ JB(F) C S({JBo, n) for each F € (J{F(B)|B € Bo}) N (U{Fxlk > n}).
On the other hand, it is easily observed that | J{B(F) | F € (U{F(B)|B € Bo}) N
(U{Fxlk < n})} is CP in X. Thus, we can easily find an open neighborhood O of
p in X such that O NW = @ for each W € | {W,(B)|B € By} O

We call {W(B)|B € B} the Lq-extension of B with respect to M in X.

From here, we assume that a space X has property (%), which we define next.

Definition 1.1.8. A space X has property (x) if every U € 7(X) satisfies the fol-
lowing condition:

(x) If p € OU, then there exists a CP family G of closed subsets of U~ such that for
each G € G, (G\{p})” =G, GNoU = {p} andif p€ O € 7(X), then pe G C O

for some G € G.

Lemma 1.1.9. Let O € 7(Y), X = O~ and M = 00, where Y is a space with
property (x). Let B be a CP family of closed subsets of M. Then there exists a set

{W(B)|B € B} of families of closed subsets of X satisfying the following:
) U{W(B)|B € B} is CP in X;
(ii) for each B € B, W(B)|M = {B} and for each W € W(B),

(IntW)"NM = B;

(iii) if BC U € 7(X), B € B, then there exists W € W(B) such that BC W C U.



Proof. By Fact 1.1.4, there exists a o-discrete closed subset D of M such that for
each B € B, (DN B)~ = B. Let D = | J{Dy|n € N}, where each D, is discrete
closed in M. For each n, we take a discrete family {V(p)|p € D,} of open subsets
of X such that p € V(p) for each p € D,. By property (x), for each p € D, there

exists a CP family G(p) of closed subsets of X satisfying the following:

(1) UQ ) C S{p},n) NV(p) for each p € D,, n € N;
(2) for each G € G(p), GNM = {p} and (G\{p})~
(3) if pe U e 1(X), then pe G C U for some G € G(p).

For each B € B, define W/(B) as follows:
AB) = {s= () e [[{wIp € DB} |, W(B) = {BUGO)|s € A(B)},
where

= | {G(@)pe DN B}

for § = (G(p)) € A(B). Then we show that {W'(B)|B € B} has the following

properties:
(4) U{W' )|B € B} is a CP family of closed subsets of X;
(5) for each B € B, W/ (B)|M = {B} and

for each W € W/(B),(W\M)~ N M = {B};

(6) if BCUe€(X), BeB, then BC W C U for some W € W(B).

To see (4), let By C B and Wy(B) ¢ W/(B) for each B € By. Suppose p &
H{W|W € Wy}, where Wy = | J{Wu(B)|B € By}. Take n € N such that p &

S(UBy,n)~. By (1), it is easily observed that

U{9®) | p e UtDulk <3}



is a CP family of closed subsets of X. Thus we can easily find an open neighborhood
O of p in X such that ONW = @ for each W € W,. Hence | {W'(B)|B € B} is
CP in X. If we apply the same discussion as above to each W € | J{W'(B)|B € B},
then W is shown to be closed in X. (5) follows easily from (2) and the closedness of
W above. (6) follows easily from (3). By Lemma 1.1.7, we can take the Lo-extension

{W"(W")|W' € W'} of
W =| J{w'(B)|B € B}
with respect to M in X. For each B € B, we define W(B) as follows:
W(B) = [ JJW'(W) W' e W (B)}.

Then it is easy from (4), (5) and (6) to see that {W(B)|B € B} has the required

properties. O
We call {W(B)|B € B} the Ls-extension of B to X in'Y with respect to O.

Lemma 1.1.10. Let O, M, X, Y be the same as in Lemma 1.1.9. Let B be a CP
Jamuly of closed subsets of X. Then there exists a set {W(B)|B € B} of families of

closed subsets of X satisfying the following:
i) UW(B)|B € B} is CP in X;
(i) for each B € B, W(B)|M = {BN M} and for each W € W(B),
(IntW)"NM = Bn M;
(ili) f BC U e7(X), BeB, then BCW CU for some W € W(B).

Proof. Let {W'(BNM)|B € B} be the Lz-extension of B|M to X in Y with respect

to O. For each B € B, let
W(B) ={BUW|W e W(BnM)}.

Then it is easy to see that {W(B)|B € B} has the required properties. O



We call {W(B)|B € B} the Ly-extension of B to X in'Y with respect to O.

Lemma 1.1.11. Let {X(n)|n € N} be a disjoint cover of a space X with property

() such that for each n

X @t <n} is closed in X and (U{X(t)[t > n}>_ 5 X(n).

(For brevity, we call such {X(n)} the special partition of X.) Let B be a CP family of
closed subsets X. Then there exists a set {\WW(B)|B € B} of families of X satisfying

the following:
i) U{W(B)|B € B} is a CP family of reqular closed subsets of X;

(ii) for each B € B, if B C U € 7(X), then there exists W € W(B) such that

BcIntWcWcU.

Proof. By Fact 1.1.5, there exists a set {\W(B;1)|B € B} of families of X satisfying

the following:

(1) W)= U{W(B; 1)|B € B} is a CP family of closed subsets of X and

each W(B; 1) is a closed neighborhood base of B in X.

By Lemma 1.1.10, there exists the Lg-extension {W(W;2){W; € W(1)} of W(1) to

X in X with respect to X\ X (1) satisfying the following:

(2) W) = JW(Wy;2)[W; € W(1)} is a CP family of closed subsets of X;

(3) for each W, € W(Wy;2), W; € W(1),

Won X(1) =W, NX(1) and (Int W5)~ N X (1) = Wy N X(1);

(4) if Wy CU € r(X), Wi € W(1), then

Wy € Wy C U for some Wy € W(W7; 2).



Assume that we have constructed the family
W(n) = [ JWW;n)|W € W(n—1)}.

It is easily checked that property (%) is hereditary with respect to any open subspaces
of X. So, we can apply Lemma 1.1.10 to the family W(n)|Y', where Y = [ { X (¢)|t >

n}, in the open subspace Y to obtain the L-extension
VW NY)IW € W(n)}
of W(n)|Y to Y in Y with respect to Y\ X (n), which satisfies the following:
(5) U{W'(W NY)|W € W(n)} is a CP family of closed subsets of Y;
(6) for each W € W(n), W(WNY)|X(n) ={WnNX(n)} and
for each W e W(WNY), Int W)~ N X(n) = Wn X(n);

(7) fWnNY COer(X), then WNY Cc W C O for some W e W(IWV NY).
For each W € W(n), let

WWin+1)={WUW|W eWWNY) and W NT,_(X\W)™ = 0},
where T;,_1 is the Li-operator with respect to | J{X ()]t <n —1} in X, and let

Wn+1) = [ JWW;n+ 1)|W € W(n)}.

Then by the properties (5), (6) and (7), it is easy to see that W(n + 1) has the

following properties:

(8) W(n + 1) is a CP family of closed subsets of X;

(9) for each W, e W(Wy;n + 1), Wy € W(n),

Wa N (U{X(t)|t < n}) —Win (U{X(t)|t < n}) and
(Int W2)” N X(n) = Wo N X(n);



(10) if Wi N (U{X(t)|t > n}) C O e 7(X), Wy € W(n), then
there exists Wy, € W(W7y;n + 1) such that Wy C W, and

Wan (U{X(t)lt > n}) C O for some Wy € W(W1y;n + 1).

Let T; be the Li-operator with respect to [ J{X ()|t <} in X. With these prelimi-
naries, we construct the required families {W(B)|B € B}. Let B € B be fixed for a

while. Let A(B) be the totality of

6= (Wn) e [[(Wm)n e N}
which satisfies the following two conditions:

(11) W(l) e W(B;1) and W(n + 1) e W(W(n);n + 1) for each n;

(12) W+ 1) (Xl 2 n}) 0RO @)7 U UT (W ()

=@ for each n.

For each 6 = (W(n)) € A(B), let W(6) = J{W(n)|n € N}. Then we can show that
W(B) = {W(6)|6 € A(B)} has the following property:

(13) Each W(6) € W(B) is regular closed in X.

To see that W(6) is closed in X, let p € (X\W(6))NX(n); thenp € T,(X\W(n+1)),
which is an open neighborhood of p in X missing W () by (12). On the other hand,

by (3), (9) and the definition of § € A(B), we have
W(5) = (U{IntW(n)|n € N})V .
By the similar way to the above, the following is true:

(14) L JW(B)|B € B} is CP in X.

Since obviously W(B) forms a neighborhood base of B in X, the proof is completed.
0

10



Remark 1. Let us recall that Ms-spaces are hereditary and property (%) is open
hereditary. Thus we can state the following: Let X, {X(n)}, B be the same as
above except for that X is an open subspace of a space Y with property (x). Then
there exists a set {W(B)|B € B} of families of X satisfying the same (i) and (ii) as

above.

Lemma 1.1.12. Let Z be an open subset of a space X with property (x). Let B =
{B(\)|A € A} be a CP family of closed subsets of the subspace Z~ and {O(X)|\ € A}
a family of open subsets of Z~ such that B(A) C O(\) for each A € A. Let V be a
disjoint open cover of the subspace Z. Then there exists a family {W (M)A € A} of

Z~ satisfying the following:
(i) {W(A)|A € A} is a CP family of regular closed subsets of Z~;
(i) for each A€ A, W(A)NOZ = B(A)NOZ and

BO) € W()) C St(O\), V).

Proof. By Lemma 1.1.10, there exists the Lys-extension {W(B(A))|A € A} of B to
Z~ in X with respect to Z.

For each A € A, we take Wi(A) € W(B())) such that B(A) € Wi(\) C
O()). Note that {W7(A)|A € A} is a CP family of closed subsets of Z~ such that
(Int W1(X)) " NoZ = B(A)NOZ for each A € A. Thus there exists a o-discrete closed

subset D of Z~ such that for each A € A

Let D = [J{Dy|n € N}, where each D, is a discrete closed subset of Z~. For each

p € D,NZ, n €N, we choose an open neighborhood O(p) of p in X such that

(1) peO(p) CcO(p)” C S({p},n) NV(p),

where V(p) is the unique member of ¥V with p € V(p).

11



Moreover, we can assume that
(2) {O(p)lp € D,N Z} is discrete in Z~.
For each A € A, we define W(X) as follows:

W) = Wi(\) U (U{O(p)-|p e DAWL (AN N Z}) .

Then it is easy to see that {/W(A)|A € A} has the required properties. O
1.1.3 The main result.

Theorem 1.1.13. If X is an Ms-space with property (x), then every closed subset

of X has CP open neighborhood base in X, hence, X s an M;-space.

Proof. Let M be any closed subset of X. It suffices to show that there exists a CP
neighborhood base of M in X, consisting of regular closed neighborhoods of M in
X [BL74, Theorem 2.6].

By Fact 1.1.1, there exists a CP closed neighborhood base B of M in X. By Fact
1.1.4, B has the mosaic F on it such that F = [ J{F(n)|n € N}, where each F(n) is

a discrete family of closed subsets of X. For each n, let
X' =JrF,
X'(n+1)=JFn+D\X' D) U---UX'(n),
Z(n) =Int X'(n), Z = | J{Z(n)ln € N},
Y=X\Z", X(n)=X'(n)nY.
Then we can show that {X(n)|n € N} is a special partition of an open subspace Y.
Since for each n € N, | J F(n) is closed in X, [ J{X(k)|k < n} isclosed in Y. We can
easily check Cly (U{X(k:)]k > n}) D X(n) for each n. So, we can apply Remark 1 to

a CP family B|Y of closed subsets of Y. Then there exists a set {W(BNY)|B € B}

of families of Y satisfying the following:

(1) U{W(B NY)|B € B} is a CP family of regular closed subsets of Y’

such that (U W(B N Y)) AT(X\B)" =0,

12



where T is the Li1-operator with respect to Z~ in X.

(2) Foreach Be B, it BNY c U € 7(X), then

there exists W € W(BNY) such that BNY CcIntW c W C U.

Let A be the totality of pairs § = (B, By) of members of B such that By C Int B;.
By Lemma 1.1.12, for each 6 = (Bj, By) € A, there exists a subset W (8) of the

subspace Z~ satisfying the following:

(3) {W(6)|6 € A} is CPin Z7;

(4) for each § = (By, By) € A, W(6) is a regular closed subset of Z~ satisfying
W(é)NoZ =ByNoZ and BynNZ- C W(8) C St(Int By, V),

where V = F|Z is a disjoint open cover of Z. Note that the last relation above

implies W(6) C B,. For each pair 6 = (By, By) € A, define
W) ={WuW()W ew(B;nY)}
By virtue of (1), (2), (3) and (4), {W(8)|6 € A} has the following properties:

(5) U{W(6)|6 € A} is a CP family of regular closed neighborhoods of M in X;

(6) if M C O e 1(X), then

there exist 6 € A and W € W(6) such that M Cc It W Cc W C O.

This completes the proof. O

Since it is easily checked that Fréchet spaces has property (x), the theorem gives

the positive answer to Tamano’s problem [Tam89, Problem 3.6].
Corollary 1.1.14. Fvery Fréchet Ms-space is M.

Here, we give two comments on property ().

13



Remark 2. Property (x) is equivalent to property (*x) if the space X is an Ms-space:

(xx) For any U € 7(X) and any p € 90U, there exists a closed set F' of X such that
F\{p} U, and (F\{p})~ = F.

Indeed, clearly (x) implies (xx). To show the converse, assume (xx). Take U, p
and F' as above. Since X is an Mgs-space, p has a CP closed neighborhood base H.

Then G = H|F satisfies (x).
Example 1.1.15. There exists an Ms-space which does not satisfy (x).

Construction. As the space X, let
X = (NU{co}) x (NU{oop)\(N x {oo}).

All points in N x N are isolated. For each n € N, the point (co,n) has the set of all
({oo} U{i|i > m}) x {n}, for m € N, for a neighborhood base. The neighborhood
base of (0o, 00) consists of sets of the form {(co, co) }U (Umzn({oo}u{ﬂi > f(m)}) x
{m}), forn € N, and f: N — N. It is easy to check that X is an Mj-space. Let
U =N x N and p = (c0,00). Then p € OU. Note that U U {p} is Arens’ space and

there is no closed set F' of X satisfying (%*). Hence X does not satisfy (x). a

Finally, we express our thanks to the referee for his comment. FEspecially we

should say that the last example is due to his idea.

14



1.2 On the M3 vs. M; problem

We introduce a technical property (P) and use it to show that every Ms-space with
(P) is an M;-space whose every closed subset has a closure-preserving open neigh-
borhood base. We show that every Ms k-space has property (P) and is, therefore,

an Mj-space.

1.2.1 Introduction

In this section we use a new technical property to prove that any Ms-space that
is a k-space must be M;. Recall that the classes of My, M;, and Ms-spaces were
introduced and studied by Ceder in [Ced61] and that, in the later paper [Bor66],
Borges studied M3-spaces, re-naming them “stratifiable spaces”. It was always clear
that My = My = M3, and a classical problem asked which of those implications could
be reversed. The best result to date is due to Gruenhage [Gru76] and Junnila [Jun78]
independently who proved that Mg = My. Whether M3 = M; is still open.

The purpose of this section is to show that certain large classes of Ma-spaces are
M;. To do that we introduce a technical property called property (P) (defined in

Definition1.2.8 of Subsection 1.2.2) and show
A) Every Mgs-space that is a k-space must have property (P) (Theorem 1.2.15);

B) Every Ms-space with property (P) is M; and has the additional property that

each of its closed subsets has a closure-preserving open base (Theorem 1.2.14).

Together with other known results, this gives

Nagata Fréchet sequential k-
space Mjz-space Mg-space = Mgs-space

[[to84] M3s-space with

hereditarily M;-space property (P)

(Recall that a Nagata space is a first-countable Ma-space and recall the equivalence

of being sequential and being k among Ms-spaces because of [Gru84, Theorem 2.13].)
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For general information and general properties of Ms-spaces, see Gruenhage’s
survey paper [Gru84]. Since, as noted above, Mg = M, we will use the fact that
every Ms-space has both a stratiﬁcétion and a o-closure-preserving quasi-base. We
denote by N the set of natural numbers. For a space X, let 7(X) denote the
topology of X. For a subset A of X, let Int A, A=, 0A denote the interior, closure,
boundary of A in X, respectively. A family W of subsets of X is called a (closed,
open) neighborhood base of A in X if W consists of (closed, open, respectively)
neighborhoods of Ain X and if A C U € 7(X), then A C W C U for some W € W.

For brevity, let “CP” stand for the term “closure-preserving”.

1.2.2 Facts and Lemmas.

We state the well-known properties of Ms-spaces or stratifiable spaces:

Fact 1.2.1 ([Ced61, Lemma 7.3]). Each closed subset of an Ms-space X has a

CP closed neighborhood base in X.

Fact 1.2.2 ([Gru84, Theorem 5.16]). A space X has a monotonical normality
operator D which assigns an open subset D(H, K) to each pair (H, K) of disjoint

closed subsets of X such that
(i) HC D(H,K) C D(H,K)™ C X\K;
(ii) if H ¢ H and K' C K, then D(H,K) C D(H', K').

Fact 1.2.3. A space X is an Mga-space if and only if there exists a stratification

S : {closed subsets of X} x N — 7(X) satisfying the following:

(i) For each closed subset F' of X,
F=({S(F,n):neN}=({S(F,n)" :ne N}
(ii) if F, F' are closed in X and F C F’, then S(F,n) C S(F’,n) for each n;
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(iii) for each n and each F,

S(F,n+1)" C S(F,n).
(Originally, the term stratification is used for S with (i) and (ii), but one with (i),
(ii) and (iii) follows by a slight change.)

Fact 1.2.4 (Essentially in [SN68]). Let B be a CP family of closed subsets of an
Ms-space X. Then there exists a pair (F,V) of families of subsets of X satisfying

the following:

(i) F is a star-finite, o-discrete closed cover of X such that if F' € F and B € B,

then BN F # ( if and only if F C B;

(i) ¥V ={V(F) : F € F} is a point-finite, o-discrete open cover of X such that
F C V(F) for each F' € F and such that if FNB =0, F € F, B € B, then
V(F)NB =10.

Since our proof of Theorem 1.2.14 depends on the construction of (F,V), we
sketch it roughly: Let P = {P(6) : § € A} be the partition of X by B’ = BU {X},

that is, for each 6 € A,
P(©) = (B \JB\BE) .
where B(8) C B. For each n € N, let
P(&n) = P(6) N (S(T(8),n~ 1)7\S(T(®),m)),

where T'(6) = |J(B'\B(6)) and S(-,0) = X. Then it is easy to check that F(n) =
{F(6,n): 6 € A} is a discrete family of closed subsets of X and F = [ J{F(n):n €

N} is star-finite. Since X is paracompact, there exists a discrete open expansion
V(n) ={V(6,n):8€ A}, n €N,
of F(n) such that

F(6,n) Cc V(6,n) C S(F(6,n),n) N (S(T(6),n—2)\S(T(8),n+1)7)
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for each § € A, n € N, where S(-,—1) = X. Then it is easy to see that V =
U{V(n) : n € N} is the required one. O
We call F the tile on B in X and V the frill of F in X.

Fact 1.2.5 ([Ito85]). Let B be a CP family of closed subsets of an Mjs-space X.
Then there exists a o-closed-discrete subset D of X such that for each B € B,

B = (DNB)~, where we call D a o-closed-discrete subset of X if D = | J{Dn : n € N}

with each D,, discrete and closed in X.

Lemma 1.2.6. Let M be a closed subset of an Ms-space X. Then there exists a

mapping T : 7(X) — 7(X) satisfying the following:
(i) For each O € 7(X), T(O)NM =0NM and

T(0)™ N (X\M) C O;

(11) ’lf 01,02 S T(X) and 01 C 02, then T(Ol) - T(OQ)

Proof. Let D and S be the monotonical normality operator and the stratification of

X, respectively. For each O € 7(X), define

T(0) = | {D(M\S(X\O,n), X\(O N S(M,n))) : n € N}.
Then it is easy to see that {T(0) : O € 7(X)} satisfies the conditions (i) and
(ii). O
We call T' the LI-operator with respect to M in X.

Lemma 1.2.7. Let M be a closed subset of an Mz-space X. Let B be a CP family
of closed subsets of X. Then there exists a collection {W(B) : B € B} of families

of X satisfying the following:
(i) U{W(B) : B € B} is a CP family of closed subsets of X;
(ii) for each B € B, W(B)|IM = {BN M} and W(B)|(X\M) is a closed neigh-

borhood base of BN (X\M) in X\M.
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Proof. Apply Fact 1.2.4 to the CP family BU{M?} to find F’, the tile on BU{M},

and consider the subfamily defined by
F={FeF :FnM=0}

Note that F is written as F = |J{F(n) : n € N}, where each F(n) is a discrete
family of closed subsets of X. Let {V(F) : F' € F'} be the frill of 7’ in X such that

for each ' € F(n),n € N,
F CcV(F)CS(F,n).

By Fact 1.2.1, there exists a CP closed neighborhood base B(F') of F' in X such that
UB(F) C V(F). To construct W(B) for each B € B, let

F(B)={Fe€F:FCB}
and
A(B) = {5 ~ (B(F)) € [[{B(F) : F € F(B)} :

W(8) = | {B(F) : F € F(B)} is a neighborhood of B N (X\M)

in X\M and W() NT(X\B)" = 0},
where T is the Ll-operator with respect to M in X. If we define
W(B)={BnW(6):6€ A(B)}, BeB,
then it is easy to see that {W(B) : B € W} has the required properties. d

We call {W(B) : B € B} the L2-extension of B in X.

We introduce property (P) as follows:

Definition 1.2.8. A space X has property (P) if every U € 7(X) satisfies the
following condition:
(%) If p € OU, then there exists a CP family G of closed subsets of U~ such that for

each Ge€ G, (GNU)" =G and if pe€ O € 7(X), then p e G C O for some G € G.

19



Lemma 1.2.9. Let O € 7(Y), X = O™ and M = 00, where Y is an Ms-space
with property (P). Let B be a CP family of closed subsets of M. Then there exists a
collection {W(B) : B € B} of families of closed subsets of the subspace X satisfying

the following:
(i) Uw(B):Be B} is CPin X;
(ii) for each W € W(B) and each B € B,

It W)"NM =W N M;

(iii) of B C U € 7(X), then there exists W € W(B) such that BC W C U.

Proof. By Factl.2.5, there exists a o-closed-discrete subset D of M such that for
each B € B, (DNB)” = B. Let D = | J{D, : n € N}, where each D, is discrete
and closed in M. For each n, we take a discrete family {V(p) : p € D,} of open
subsets of X such that p € V(p) for each p € D,,. By property (P), for each p € D,

there exists a CP family G(p) of closed subsets of X satisfying the following:

(1) JGw) c S{p},n) NV (p) for each p € Dy, n € N;
(2)  for each G € G(p), (G\M)~ = G and
if p € O € 7(X), then there exists G € G(p) such that p € G C O.

For each B € B, define W/(B) as follows:
Let A(B) = [[{¢(p) : p € DN B} and for each § = (G(p)) € A(B), let G(8) =
\U{G(p) : p € DN B}. Define W(B) = {BUG(6) : § € A(B)}. Then from (1) and

(2) it is easily seen that {W(B) : B € B} has the following properties:

(3) W = U{W’(B) : B € B} is a CP family of closed subsets of X;
(4) for each W € W/(B), (W\M)~ = W;
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(5) if BCU € 7(X)and B € B, then

there exists W € W/(B) such that BC W C U.

By Lemma 1.2.7, we can take the L2-extension {W"(W') : W' € W'} of W' in X.

For each B € B, we define W(B) as follows:
W(B) = | W' (W) : W' € W(B)}.

Then it is easy from (3), (4) and (5) to see that {W(B) : B € B} has the required

properties. O
We call {W(B) : B € B} the L3-extension of B to X inY.

Lemma 1.2.10. Let M be a closed subset of an Ms-space X with property (P) such
that X\M is dense in X. Let B be a CP family of closed subsets of X. Then there
exists a collection {W(B) : B € B} of families of closed subsets of X satisfying the

following:
i) W= J{W(B): BeB}is CPin X;
(ii) for each W € W,

(Int W)™ N M =W N M;

(iii) f BC U € 7(X) and B € B, then BC W C U for some W € W(B).

Proof. Let {W/ (BN M) : B € B} be the L3-extension of B|M to X in X. For each

B e B, let
W(B)={BUW : W eW (Bn M)}
Then it is easy to see that {W(B) : B € B} has the required properties. O

We call {W(B) : B € B} the Lj-extension of B in X with respect to M.
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Lemma 1.2.11. Let M and X; be closed subsets of an Ms-space X with property
(P) such that X; C M and M\X; C (X\M)~. Let B be a CP family of closed
subsets of X. Then there exists a collection {\W(B) : B € B} of families of closed

subsets of X satisfying the following:
i) UW(B): B € B} is CP in X;
(ii) for each B € B and each W € W(B), WN X, = BNX; and
(Int W)~ N (M\X1) = W N (M\X4);
(iii) of B\X, C O € 7(X), B € B, then there exists W € W(B) such that BC W
and W\X; C O.

Proof. First we observe that property (P) is hereditary with respect to open sub-
spaces and we recall that Ms-spaces are hereditary. Thus we can apply Lemma 1.2.10
to the open subspace X\ X;. There exists the L4-extension {W'(BN(X\X1)) : B €
B} of Bl(X\X;) in X\ X, with respect to M\ X;. For each B € B, we define W(B)

as follows:
W(B)={BUW : : W eW((BN(X\X;)) and WNT(X\B)" =0},

where T is the Ll-operator with respect to X; in X. Then it is easy to see that

{W(B) : B € W} satisfies all conditions (i), (ii) and (iii). O
We call {W(B) : B € B} the Lb-extension of B in X with respect to {M, X1}.

Lemma 1.2.12. Let {X(n) : n € N} be a disjoint cover of an Ms-space X with
property (P) satisfying the following:

For each n,
(a) U{X():t<n} is closed in X;

(b) X(n) C (U{X(t):t>n})".
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(From here, for brevity we call such {X(n)} the special partition of X.)

Let B be a CP family of closed subsets of X. Then there exists a collection

{W(B) : B € B} of families of X satisfying the following:
(i) U{W(B) : B € B} is a CP family of regular closed subsets of X ;

(ii) of B C U € 7(X) and B € B, then there exists W € W(B) such that B C

IntWw cW cU.

Proof. By Lemmal.2.7 with M = @, there exists a collection {W(B;1) : B € B} of

families of X satisfying the following:

(1 w@)= U{W(B; 1) : B € B} is a CP family of closed subsets of X and

for each B € B, W(B; 1) is a closed neighborhood base of B in X.

By Lemmal.2.10, there exists the I4-extension {W(W4;2) : Wi € W(1)} of W(1)

in X with respect to X (1), which satisfies the following:
(2) W2 = U{W(Wl; 2) : W; e W(1)} is a CP family of closed subsets of X;

(3) for each W, € W(2),

(Int Wo)™ N X (1) = W N X(1);

(4) if Wy c U € 7(X) and Wy € W(1), then

there exists W, € W(Wh;2) such that W € W, C U.
Let T1 be the Ll-operator with respect to X(1) in X and construct the family
T(1) = {T1(X\M) : W e W(2)}.
Assume that we have constructed families

W(n) = | JIW(W;n) : W € W(n - 1)},

T(n—1)={T1(X\W) : W e W(n)},
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where T, is the Ll-operator with respect to [ J{X(¢) :t <n —1} in X. We apply

Lemmal.2.11 to the case

M= J{X@®):t<n}, Xi=| {X@®):t<n—-1}

and B = W(n) in X. Thus there exists the L5-extension {W(W;n+1) : W € W(n)}
of W(n) in X with respect to {M, X1} replaced with the above, which satisfies the

following:

(5) Wn+1) = [ JWW;n+1): WeWn)}

is a CP family of closed subsets of X;

(6) for each Wp € W(W3;n+ 1) and Wy € W(n),
(Int Wo)" N X(n) = X N X(n) and

WQH(U{X(t) :tgn—l}) :I/Vlﬂ(U{X(t) :tgn_l});
(7) if W]\Xl COe T(X) and W1 € W(TL), then
there exists W, € W(Wy;n + 1) such that Wy € W, and W\ X; C O.
By Lemmal.2.6, we take the family
T(n) = {To(XAW) : W e W(n + 1)},

where T, is the Ll-operator with respect to | J{X(¢) : ¢ < n} in X. With these
preliminaries, we construct the final families {\WW(B) : B € B} as follows: Let B € B

be fixed. Let A(B) be the totality of

§=(W(n) € [[wn) : ne N}
satisfying the following two conditions:

(8) W(l) e W(B;1) and W(n + 1) € W(W(n);n + 1) for each n;
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9 Wn+2)n (U{Ti(X\W(z' Y1) i< n}) N (U{X(t) t>nt 1}) -0,

for each n.

For each § = (W(n)) € A(B), let W(6) = [{W(n) : n € N} and let W(B) =
{W(6) : 6 € A(B)}. Then we show that W(B) has the following property:

(10) Each W(8) € W(B) is regular closed in X and a neighborhood of B in X.

To see that W (6) is closed in X, let p € (X\W(8))NX(n); then p € T,,(X\W(n+1))
which is an open subset of X missing W(§) from (9). On the other hand, by (3),

(6) and the definition of W(8) we easily have

W(8) = (U{Int W(n):ne N})" .

Since W(1) C W (6) and by (1) W(1) is a neighborhood of B in X, W (§) is also a
neighborhood of B in X. This shows (10).

By the similar way to the above, the following is easy to see:
(11) | JOw(B) : BeB}is CPin X.

By (1), (2) and (7), it is easy to see that W(B) is a neighborhood base of B in X.

This completes the proof. O

Remark 3. Taking it into account that property (P) is hereditary with respect to
open subspaces, we can say the following which is needed in the proof of the next
theorem: Let X, {X(n)} and B be the same as above except for that X is an
open subspace of an Ms-space Y with property (P). Then there exists a collection

{W(B) : B € B} of families of X satisfying the same (i) and (ii) as above.

Lemma 1.2.13. Let Z be an open subspace of an Ms-space X with property (P). Let
B be a CP family of closed subsets of the subspace Z~ and {O(B) : B € B} a family
of subsets of Z~ such that O(B) is open in Z~ and B C O(B) for each B € B. Let
V be a disjoint open cover of Z. Then there exists a family {W(B): B € B} of Z~

satisfying the following:
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(i) {W(B) : B € B} is a CP family of reqular closed subsets of Z~;
(ii) for each B € B, W(B)No0Z C O(B)N0Z and
B c W(B) C St(O(B),V).
Proof. By Lemma 1.2.9, there exists a the L3-extension {W(BN0Z) : B € B} of
B|0Z to Z~ in X, which satisfies the following:

(1) W= U{W(B NOZ) : B € B} is a CP family of closed subsets of Z~ and

for each W e W, (Int W)~ NoZ =Wnoz;

(2) it BCUe€7(X), BeB, then W CU for some W e WBNJZ).

For each B € B, by (2) we take W1(B) € W(BN0Z) such that W1(B) C O(B). By

(1) and CP-ness of B, we see that
{G(B) = BUW,(B): B € B}

is a CP family of closed subsets of Z~. Thus, by Fact 1.2.5 there exists a o-closed-

discrete subset D of Z~ such that foreach B € B
G(B)=(G(B)nD)".

Let D = |J{Dn : n € N}, where each D, is a discrete and closed subset of Z~. For

eachpe D,NZ,n € N, we take an open neighborhood O(p) of p in X such that

(3) p€O() CcO(p)” CS{p},n)NV(p)

where V(p) is the unique member of V with p € V(p). Moreover, we can assume

that
(4) {O(p) : p € D.NZ} is discrete in Z~.
For each B € B, we define W(B) as follows:
W(B) = G(B) U (U{O(pr . pe DNG(B)N Z}) .

Then it is easy to see that {W(B) : B € B} has the required properties. O

26



1.2.3 The main result.

Theorem 1.2.14. If X is an Ms-space with property (P), then X is an M -space

such that every closed subset of X has a CP open neighborhood base in X.

Proof. Let X be an Ms-space with property (P). Then it suffices to show that every
closed subset of X has a CP neighborhood base whose members are regular closed
in X, [BL74, Remark 2.7]. Let M be a closed subset of X. By Fact 1.2.1, there
exists a CP closed neighborhood base B of M in X. By Fact 1.2.4, there exists the
tile F on B such that F = | J{F(n) : n € N}, where each F(n) is a discrete family

of closed subsets of X. For each n, let

X' =xw,
X'(n+1) = JFn+D\X' (1)U UX'(n),

Z(n) = Int X'(n)
and let
Z = U{Z(n) :n€ N}, Y=X\Z and X(n) = X'(n) NY.

Then {X(n) : n € N} is the special partition of the open subspace Y (see Lemma
1.2.12). We apply the Remark 3 to a CP family B|Y of closed subsets of Y. Then

there exists a collection {W(BNY) : B € B} of families of Y satisfying the following:

(1) U{W(B NY): B € B} is a CP family of regular closed subsets of Y

(2) foreach Be B, if BNY C U € 7(X), then

there exists W € W(BNY) such that BNY cIntW Cc W c U.
Moreover without loss of generality we can assume the following:

(3) For each B € B, (U W(B N Y)) AT(X\B)™ =0,
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where T' is the Ll-operator with respect to Z~ in X. Let A be the totality of pairs
§ = (B, Ba) of members of B such that B; C Int B,. By Lemma 1.2.13, for each
6 = (By,By) € A, there exists a subset W(6) of the subspace Z~ satisfying the

following:

(4) {W():6€ A}is CPin Z7;

(5) for each 6 = (By, By) € A, W(6) is a regular closed subset of Z~ such that

B1 NZ" C W((S) - St(II’lt BQ,V),

where V = F|Z is a disjoint open cover of Z. Note that the last inclusion relation

implies W (6) C By. For each pair § = (By, By) € A, define
W) = {WUuWw(6):WeW(BNnY)}

By the statements (1) to (5), it is easy to see that {W(6) : § € A} has the following

properties:

6 W= JWeE) :6en}

is a CP family of regular closed neighborhoods of M in X;

(7) i M CO e 1(X), then there exists 6 € A and W € W(6) such that

McIntW cCcW coO.

Hence we have obtained a CP neighborhood base of M consisting of regular closed

subsets of X. This completes the proof. (]

Theorem 1.2.15. A k-Ms-space has property (P), and therefore a k-Ms-space is

M.

Proof. Note that for an Ms-space both k-ness and sequentialness are equivalent,

because every compact subset of an Ms-space is metrizable [Gru84, Theorem 2.13].
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So, it suffices to show that a sequential Ms-space has property (P). Since every
closed subspace of a sequential Mg-space is also sequential Mg, it suffices to show
the following: For a closed nowhere dense subset M of a sequential Ms-space X and
any point p € M, there exists a CP family G(p) of closed subsets of X that acts as
a local net at the point p in X and that has (G\M)~ = G for each G € G(p).

For contradiction, suppose that there exists a point p € M for which there is no CP
family G(p) of the type as described above. We show that M cannot be nowhere
dense in X, and that contradiction completes the proof.

We say that point z € X “has G(z)” provided G(z) is a CP family of closed subsets
of X such that G(z) acts as a local net at = and for each G € G(z) we have
(G\M)~ = G. If no such family exists, we say that = does not have G(z).

Claim 1: Suppose that 2 € X does not have G(z) and that {z(m) : m € N} is
any sequence of points of X that converges to z. Then for some n, m > n implies
that z(m) does not have G(z(m)).

Proof of the claim: Suppose that the claim is false. Then for some {z(n) : n € N}
converging to z, there is an infinite subset N’ C N such that for each n € N, z(n)
has G(z(n)). Using the given sequence {z(n)} that converges to z, by replacing N’

by an infinite subset N’ if necessary, we may assume that for each n € N’, we have
{z(m) :m>n, me N} C S({z},n)
and

USGm) c s({z}n).

Set
A(n) = [[{6(2(k)) : k > n, k€ N'}, ne N/,
and for each § = (G(z(k))) € A(n), set

c(®) = (LHGGEW®) k= n})
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Letting
G(n) ={G(6): 6 € A(n)}, ne N,
we define the family G(z) as

G(z) = U{g(n) :n € N'}.

Then, as easily seen, G(z) is a family of closed subsets of X that acts as a local net
at z in X and having (G\M)~ = G for each G € G(z). We show that G(z) is CP

in X. Let Gy C G(z) and suppose

e x\(Uss).

Since z # y, there exists k € N’ such that y ¢ S({z},k)~. Let Gy = U{Go(n) : n €

N'}, where Go(n) C G(n) for each n € N'. If we note that
J{G() :t >k, te N'} € S({z}, k)

and that

U{g(z(t)) ‘t<k teN'}

is CP in X, then it is easy to find a neighborhood O of y in X such that

on (U go) =0,
which proves y & (|JGo) . Hence G(z) is CP in X. But this contradicts the key
property of z as described in Claim 1. Thus Claim 1 holds.

Now, let Ty = {p}. Apply Claim 2 to the point p to show that for each sequence
{z(m) : m € N} of points of X converging to p there is n € N beyond which no
term z(m) of the sequence has G(z(m)). Let {Z, : @ € A(1)} be the totality of
sequences 7, = {2,(n) : n € N} in X that converges to p and have the property

that no term 2,(n) has G(z,(n)). Let

Ty = J{Za:a e AQ}UT.
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Suppose n > 1 and we have defined the set T,,. Let {Z, : @ € A(n + 1)} be the
totality of sequences Z, = {z,(n) : » € N} in X that converges to a point of T,

and have the property that no term z,(n) of Z, has G(2,(n)). Define
Tni1 = | J{Za 0 € An+ 1)} UT,.

With 7, defined recursively in this manner, let 7' = { {7, : n > 0}.

Claim 2: T is sequentially open in X.
For suppose that {y(n) : n € N} is a sequence of points of X that converges to some
point ¢ € T. Then g € T} for some j. According to Claim 1, there is m € N such
that for each n > m, the point y(n) does not have G(y(n)). Hence the sequence
Z ={y(m+ k) : k € N} is one of the sequences Z, for some o € A(j + 1) so that
Z CT(j+1) CT. Hence T is sequentially open in X.

Because X is sequential, we conclude that T" is an open subset of X.

Claim 3: T'C M.
This claim follows easily from the observation that if y € X\ M, y has a CP closed
local net G consisting of sets that entirely miss the closed set M. Then for each
G € G, we certainly have (G\M)~ = G.

We have a contradiction to the original observation that M is closed and nowhere

dense in Y. This completes the proof. O
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1.3 A Lasnev space is LF-netted

We show that every Lasnev space is LF-netted.

1.3.1 Introduction.

All spaces are assumed to be regular Ty-spaces. For a space X, 7(X) denotes the
topology of X. N always denotes natural numbers. For a subset A of a space X, let
A~ and IntA be the closure and interior of A, respectively, in X. For simplicity, let
letters CP, LF stand for closure-preserving, locally finite, respectively. For a family
U of subsets of X and a subset A of X, U|A denotes the family {U N A|U € U} and
U~ denotes the family {U~|U € U}. We call U a neighborhood base of A in X if U
consists of neighborhoods of A in X and if A C O € 7(X), there exists U € U such
that A C U C O. In addition, if all member of If are closed, open in X, then I{ is
called closed, open, respectively.

Recently, Junnila and Yajima [JY] introduced a new class of LF-netted spaces.
A space X is defined to be LF-netted if X has a net F that is both o-LF and
LF-regular in X, where F is called LF-regular in X if for each closed subset S of
X,{F € FIFNS # 0} is LF in X\S. They introduced it in search of theory of
normality of product spaces rather than generalized metric spaces. However, as for
the results on generalized metric spaces, they gave some relations between LF-netted
spaces, o-spaces and Ms-, F,-metrizable spaces. We study this class from the point

of view of generalized metric spaces, especially here we establish the implication:
Lasnev space — LF-netted space.

This is the positive answer to [JY, Problem 4*|. Regarding to this problem, Sakai,
Tamano and Yajima proved recently that every separable LaSnev space is LF-netted
[STY, Theorem 3.8]. But our proof is different from theirs in the sense that actually
every D-space is shown to be LF-netted. Here, Ms-spaces are used to mean spaces

having both the stratification and a o-CP quasi-base.
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1.3.2 Lasnev spaces and LF-netted spaces.

We state known definitions and known facts used here:

Definition 1.3.1 ([Nag80b, Definition 4.4]). A space X is called a D-space if
X is a paracompact o-space such that each closed subset F' of X has a uniformly
approaching anti-cover in X, where an open cover U of X\F is called uniformly

approaching to F' in X if for each O € 7(X),
St(X\O,U) " N(ONF)=0.

Fact 1.3.2. Let X be a space and F' a closed subset of X which has a uniformly
approaching anti-cover W of F'. Then for each open subset U of X, there exists

Wy C W such that (FNU) U ((JWy) is open in X and
[(F AU) U (U Wo)] NSt (X\U, W) = 0.

Fact 1.3.3. A space X is a stratifiable space (or equivalently an Ms-space) if and
only if there exists a stratification S : {closed subsets of X} x N — 7(X) satisfying

the following:

(i) For each closed subset F' of X,
F=({S(F,n)ln € N} = [{S(F,n)"|n € N};
(ii) if F, F' are closed in X and F' C F’, then S(F,n) C S(F’,n) for each n;
(iii) for each m and each F,
S(F,n+1)” C S(F,n).

(Originally, the term stratification is used for S with (i) and (ii), but one with (i),

(i) and (iii) follows by a slight change.)

Fact 1.3.4 (Essentially in [SN68]). Let B be a CP family of closed subsets of an
Mjs-space X. Then there exists a pair (F,V) of families of subsets of X satisfying

the following:
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(i) F is a star-finite, o-discrete closed cover of X such that if FF € F and B € B,

then BNF # § if and only if F C B;

(ii) Vv = {V(F)|F € F} is a point-finite, o-discrete open cover of X such that
F C V(F) for each F € F and such that if FNB =0, F € F, B € B, then
V(F)NnB = 0.

Since our proof of Theorem 1.3.6 depends on the construction of {F,V) rather
than the fact itself, we sketch it roughly: Let P = {P(6)|6 € A} be the partition of
X by B' = BU{X}, that is, for each § € A,

P(©) = (N B6) \JB\B©))
where B(6) C B'. For each n € N, let
F(6,n) = P(6) N (S(T'(6),n — 1)"\S(T'(6),n)),

where T'(6) = J(B'\B(6)) and S(-,0) = X. Then it is easy to check that F(n) =
{F(6,n)|6 € A} is a discrete family of closed subsets of X and F = | J{F(n)|n € N}

is star-finite. Since X is paracompact, there exists a discrete open expansion
V(n) ={V(6,n)|6 € A}, n €N,
of F(n) such that
F(6,n) CV{(6n) C S(F(6,n),n)N(ST(6),n—2)\S(T(6),n+1)7)

for each 6 € A, n € N, where S(-,—1) = X. Then it is easy to see that V —

U{V(n)|n € N} is the required one.

Fact 1.3.5. Let W be a LF family of open subsets of a space X. Then there exists

a LF closed cover F of X such that if FNW #0, Fe F, W € W, then F C W~.

Proof. Let {P(6)|6 € A} be the partition of X by W~ U {X}. Then it is easy to

see that F = {P(6)~|6 € A} is a required family. O
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Theorem 1.3.6. FEvery D-space is an M-, LF-netted space.

Proof. Let X be a D-space. Since it is an My-space [Nag80b], it is suffices to show
that X is LF-netted. Since X is an Ms-space, for each U € 7(X) there exists a

sequence {B,(U)|n € N} of subsets of X satisfying the following:

(1) For each n,

B(n) = {Bn(U)|U € 7(X),m <n}
is a CP family of closed subsets of X;

(2) for each U € 7(X),

U= J{Bn(U)In € N} = | [{Int B,(U)In € N}.

Let n € N be fixed for a while. Because of (1), we can use Fact 1.3.4 to B(n)

and get a pair (F(n),V(n)) of families of subsets of X satisfying the following:

(3) F(n) = | J{F(n,m)jm e N}

is a star-finite closed cover of X such that each F(n,m) is discrete in X and if

B € B(n), F € F(n), then FN B #  if and only if F C B;

(4) V(n)={V(F)|F € F(n)} is a point-finite open cover of X such that
if BONF =40, BeB(n), FeF(n), then BNV(F) = 0 and such that

for each m, {V(F)|F € F(n,m)} is a discrete open expansion of F(n,m).

Since X is a D-space, each F' € F(n) has a uniformly approaching anti-cover
W/(F) in X. Since X is hereditarily paracompact and F' is a Gs-set of X, we can

assume the following:
(5) W/(F) is LF in X\F and o-LF in X.

Let W(F) = W/(F)|V(F). We inductively construct {H(n,m)|m € N} as fol-

lows:
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For m = 1, let H(n,1) = F(n,1). We can easily observe by (5) that for each m > 1

and F € F(n,m) the family

w () = {W(F',F) !F’ e | HFn,ili <m}, FnF = @} ,

where W(F', F) = W(F")|F, is a LF family of open subsets of the subspace I'. By

Fact 1.3.5, there exists a LF closed cover H,(F') of F' satisfying the following:
(6) If WeW(F), He Hn(F), then WN H # @ implies H C W~.
Let
= J{Ha(P)IF € F(n,m)},
= U{'H(n,m)|m € N}

Then H(n) is a o-LF closed cover of X. By (2), H = [J{H(n)|n € N} is a net for
X. We show that H is LF-regular. Let p € U € 7(X). By (2), there exists n € N
such that p € Int B, (U). By (3) and by the fact that H(m) < F(m), m € N, it is

easy to see that

Bn(U) NSt (X \U | {H@®)IE > n}) —

Let kK < n be fixed. By the property of F(k) in (3), there exist sy, € N and
F € F(k,s0) such that p € F and F N F' = § for each F' € | J{F(k,t)|t > t;}. By

Fact 1.3.2, there exists Wy C W(F') such that
wi=wnru(Jm)

is an open neighborhood of p in X such that

(7) W1 NSt(X\U,W(F))~ = 0.

This means ((JWp)™ N(X\F) C U. Let

we = X \J{F e JtF k.0t < to} ]p ¢F},
F(p) = {F’ e HF(k,1)lt < to} ]p € F}.
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Then F(p) is finite. Since for each F' € F(p), Hx(F") is LF in F’ and hence in X,

there exists an open neighborhood W3 of p in X such that

{# e Ut(F)IF € 7@)}| 1 0w = 0}
is finite. By virtue of (6) and (7), if we set

Ok(p) = Wi N Wy N W,

then O(p) is an open neighborhood of p in X such that

{H e H(k)[H N (X\U) # 0, H N Ox(p) # 0}
is finite. Hence we find an open neighborhood

O = [ {Ox(p)lk < n} Nint B,(U)

of p in X such that O intersects only finite members of H intersecting X\U. Hence

‘H is LF-regular in X. This completes the proof. O

We note that every LasSnev space is a D-space. Because every metric space
is obviously a D-space and by virtue of [Miz81, Lemma 2|, the closed image of a

D-space is also D-space. As the corollary, we have:

Corollary 1.3.7. Fvery Lasnev space is LF-netted.
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1.4 The historical note

Ceder [Ced61] introduced My, My, and M3-spaces, the definitions of which are viewed
as variations on the Nagata-Smirnov metrization theorem inspired by Michael’s three

notes on paracompactness [Mic53, Mic57, Mic59].

Definition 1.4.1. A space X is an M;-space if it has a o-CP base.
Definition 1.4.2. A space X is an M,-space if it has a o-CP quasi-base.
Definition 1.4.3. A space X is an Ms-space if it has a o-cushioned pair base.

It is easy tosee M; — My — Mj3. Ceder proposed the problem whether the reverse
relations hold or not in [Ced61]|. Borges [Bor66] renamed an Ms-space “stratifiable”

in terms of “stratification” and studied the class.

Definition 1.4.4. A stratification of a space X is a mapping S : {closed subsets of
X} x N — 7(X) satisfying the following;

(i) for every closed F', (), S(F,n)=(),S(F,n) = F,

(ii) if ' C H, then S(F,n) C S(H,n) for each n.

A space X is a stratifiable space if it has a stratification.

As the positive answer to the second of the reverse relations was given by Jun-
nila [Jun78] and Gruenhage [Gru76] independently. Thus the first remains unsolved
and it became one of the most outstanding unsolved problems in general topology.

To this problem, the first partial answer was given by Slaughter Jr. [S1a73].

Theorem 1.4.5. Fvery Lasnev space, that is, the closed image of a metric space,

s an M;-space.

His proof was dependent on the decomposition theorem and the inner charac-

terization of Lasnev spaces due to Lasnev [Las65], especially the Fréchetness of a
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Lasnev space was essential. For now, it seems rather primitive and lengthy. For one
reason, he had no concept of irreducible mappings. A mapping f : X — Y is called
irreducible if there is no closed proper subset X' of X such that f(X') =Y. If we
can use this concept, we can prove Theorem 1.4.5 without Fréchetness and more
simply.

Nagami defined two classes of spaces, both of which are the generalization of
Lasnev spaces. The former is that of L-spaces in his first paper [Nag80b] and the
latter is of free L-spaces in the second paper [Nag80a]. Two classes played an
important role in his dimension theory. The definitions are obtained by choosing

good properties from Lasnev spaces:

Definition 1.4.6. A space X is an L-space if X is a paracompact o-space such
that every closed subset M of X has an approaching anti-cover { in X. (An open
cover of U of X\M is called approaching if for each neighborhood U of M in X,
St(X\U,U) N M = 0.

Since X\ M is paracompact, without lose of generality we can assume that U =

{Uas|a € A} is locally finite in X\ M. If we define a family V as

V= {V(é) —~ MU (U{Uala c 5}) l
8 C A and V(8) is an open neighborhood of M in X},

then V is a CP open neighborhood base of M in X, which leads to the fact that an L-
spaces has good properties with respect to closed images and heredity, however, they
have one defect that they are not preserved even by two product. So, it is natural
for Nagami to define the class of free [-spaces, because they are characterized as
subspaces of the countable product of L-spaces. But, the original definition is as

follows:

Definition 1.4.7. A space X is a free L-space if X is a paracompact space with a

free L-structure (F, {Ur|F € F}) satisfying the following:
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(i) F is a o-discrete family of closed subsets of X and each F' € F has an anti-

cover Up.

(ii) If p € O € 7(X), then there exists Fi,--- , Fy € F and their canonical neigh-

borhoods Vi, - - - , Vi, respectively, such that
pe(Ec(Vco.

A free L-space is an Mj-space because it has a 0-CP base W consisting of all

finite intersections of sets of form

V=FuU (U{Uaya = 5}) ,

where F' € F and Ur = {U,|a € Ap} is a locally finite open cover of X\F.
Gruenhage showed in [Gru78| that every Ma-space which is the countable of
closed and discrete subsets is an Mg-space, that is, a space which has a 0-CP base
consisting of clopen subsets. This situation was extended to F,-metrizable Ma-
spaces in his paper [Gru80], where a space X is called F,-metrizable if X is the
countable union of closed metrizable subsets, and this is equivalent to Nagami’s
original o-metric space [Nag71]. Gruenhage’s method adopted here is nothing but
the construction of a special g-function on X x N. As well known, an Mjz-space is

characterized by g-functions as follows:

Fact 1.4.8. A space X is Mj if and only if there exists a function g : X xN — 7(X)

satisfying the following;
(i) g(z,n) 5 z for each (z,n) € X x N,
(i) y € g(z,n) — g(y,n) C g(z,n),

(ili) if H is a closed subset of X and z ¢ H, then there exists n € N such that

z ¢ | Holw,n)ly € H}.
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Generally speaking, the following is a standard way to construct a o-CP closed

quasi-base through g-function ¢ as above:

G~ {x\ Utge,m)ls € X\0} | 0 € 7(X),n N},

But

{X \ lg(z,n)lz € X\0} ‘ O¢ T(X)}

may fail to be the family of regular closed subsets of X, through it is CP in X.
Gruenhage defined the special g-function on a F,-metrizable Ms-space so that G
has the this additional property.

It is known that the class of Mg, F,-metrizable spaces is not countably produc-
tive [Nag71]. This leads to the following natural question: Is any subspace of the
countable product of M3, F,-metrizable spaces M7 Mizokami showed in terms of
M-structures that this is true [Miz84]. According to Nagami [Nag70], a space is a
p-space if it is embedded into a countable product of paracompact F,-metrizable
spaces. Later, Junnila and Mizokami showed that the class of Ms-spaces with M-
structures coincide with that of Mz, p-spaces and also with that of spaces embedded
into a countable product of Mz, F,-metrizable spaces [JM85]. The class of M3, p-
spaces is closed under subspaces and countable product. Moreover, this class have
one good property that they are the perfect images of strongly zero-dimensional one
in the class. Since an Mj, p-space has Ind = 0 if and only if it is an Mg-space,
it follows that every Mj, p-space is the perfect image of an Mgy-space. What kind
of bases does any perfect image of an My-space have as its inner characterization?
Ohta gave a complete answer to this. According to his paper [Oht89], perfect im-
ages of an My-spaces can be characterized as spaces having a o-FCP fitting base.
Of course, these bases are stronger than those of M;-spaces.

Lasnev spaces are included in the class of Fréchet Ms-spaces. If we strengthen

Fréchetness to first countability, we reach to the class of Nagata spaces.
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Ito gave the positive answer to the open question whether every Nagata space
is M;. Actually, in [Ito85] he showed that if each point of an Ms-space X has a CP
open local base, then every closed subset of X has a CP open neighborhood base in
X, and hence X is M. His technique is simple but has a few applications: Let M
be a closed subset of an Ms-space X with the property as above. Then M has a CP
closed neighborhood base B in X, for which we can take a dense subset D = | J, D,
with each D, closed and discrete in X such that for each B € B BN D = B.
Since by the assumption each p € D,, n € N, has a CP local base V(p) such that

UV(p) € S{p},n), we can expand each B to sets of the form

BU({HV@IVE) € Vp)and p e DN BY)

so that the totality of such sets forms a CP open neighborhood base of M in X, and
by virtue of [BL74], X is M;.

Tamano used this technique in a slightly different way and established that every
Baire, Fréchet, Ms-space is M;. In fact, in [Tam89] he showed that Ito’s argument
can apply to show M3y — My, even if every point p of X has a CP family V of open
subsets of X such that {V|V € V} acts as a local network at p in X, which Baire
Fréchet o-space have.

The implication and the relation between all spaces treated here are given in

Figure 1.1.
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Baire, Fréchet, Ms-space

Lasnev space
l Nagata space

Mg, a-discrete space L- space

Fréchat Ms-space
Ms, F, metrlzable space free L—space

N7

Ms, u—space sequential Ms-space

k, Ms-space
perfect image of an Mg-space

M;-space

Figure 1.1: The implication and the relation
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Chapter 2

On hyperspaces, mapping spaces
and their relations to generalized
metric spaces

2.1 Similarity of monotonical normality and strat-
ifiability in hyperspaces and mapping spaces

We consider the coincidence of being monotonically normal and being stratifiable

for hyperspaces K(X), F(X) and for mapping spaces Ck (X,Y) with compact-open

topology.
2.1.1 Introduction.

All spaces are assumed to be regular T;-spaces and all mappings to be continuous.
The set of natural numbers is denoted by the letter N.

A space X is called monotonically normal (for brevity in the sequel MN) if there
exists a function G which assigns to each ordered pair (H, K) of disjoint closed
subsets of X (or equivalently separated subsets of X [HLZ73, LemmaZ2.2|) an open

subset G(H, K) such that
(a) HCG(H,K) CG(H,K)” C X\K;

(b) if (H’, K') is another pair having H € H' and K’ C K, then G(H,K) C

G(H' K").

(G is called a monotone normality operator (for brevity MN operator) for X.)
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A space X is called stratifiable if there exists a function S : {closed subsets of

X} x N — 7x (the topology of X), called a stratification of X, such that;

(a) if H, K are closed subsets of X such that H C K, then S(H,n) C S(K,n) for

each n € N;

(b) H={S(H,n)ln € N} = "{S(H,n) |n € N} for each closed set H of X.

As known, a stratifiable space is equivalent to an Ma-space i.e., a space having
a o-closure-preserving quasi-base.

In this section, we establish the similarity of being MN and being stratifiable
for hyperspaces K(X), F(X) with finite topology and mapping spaces Ck(X,Y)
with compact-open topology. Until now, we have one form of similarity given by
[HLZ73, Corollary4.2] that a space X is stratifiable if and only if X*°, the product
of countably many copy of X, is MN.

As for undefined term here refer to [Gru84.

2.1.2 Monotone normality of hyperspaces.

Let K(X) be the space consisting of all non-empty compact subsets of a space X

with a finite topology which has the base
{(Ula"' aUk> | Ula"' 7Uk € TX7kEN},
where (A, .-+, Ag), A1, , Ax C X, is the subset of K(X) defined by

k
(Ay,--- ,Ak>:{KeI'C'(X) ’KCuAiandKﬂAi}‘@foreachi}.

=1

If X is regular Ty, then so is K(X) [Mic51, Theorem4.9.10]. Let F(X) be the
subspace of K(X) consisting of all finite subsets of X.

To state the theorem, we introduce the following notation: If a space X has
a convergent sequence {z,|n € N} of X with its limit point = such that z, # =z,

Ty # Tp for each m,n € N with m # n, then we write

L(z) = {zajn € N} U {z}.
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Theorem 2.1.1. Suppose that there exists L(z), L(y) in a space X such that L(z)N

L(y) = 0. Then the followings are equivalent:
(i) F(X) is MN.

(i1) X 1is stratifiable.

(#i) F(X) is stratifiable.

Proof. (ii) — (iii) is shown in [Miz96, Theorem2]. (iii) — (i) is trivial. (i) — (ii):
Since X = {{=z} [ z € X} C F(X) is homeomorphic to X, X has the MN operator
Gx for X. Let H be any closed subset of X. First, using L(z) we construct a
sequence {S(H,n;z)|n € N} of open neighborhoods of H in X with some property.

Set

A(H) = {{p,za} | p € H\L(z), n € N},

B(H) = {{p,z} | p € X\({ U L(2))}.

Then A(H), B(H) are separated in F(X). Let G be the MN operator for F(X).
Since G(A(H), B(H)) is an open neighborhood of A(H) in F(X), for each {p,z,} €
A(H) there exists the maximal open neighborhood V (p; z,,, H) of p in X satisfying

the following (1), (2) and (3):

(1) (V(p; 2, H),{zn}) C G(A(H), B(H));

(2) if z, € H, then

V(p;zn, H) C Gx(H,{z});

(3) if £ € H, then
V(p;zn, H) C Gx(H,{z}).

Set

S(H,n;z) = U{V(p; T, H) ’ {p,z.} € A(H)}.
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Then {S(H,n;z)|n € N, H closed in X} satisfies the following (4), (5) and (6):

(4) S(H,n;z) is an open subset of X such that H\L(z) C S(H,n;z) for each n;

(5) if p ¢ H, then there exists n € N such that p &€ S(H,n;z)".

To see (5), let p & H. If p & L(z), then {p,z} € B(H), which implies {p,z} &
G(A(H),B(H)) . Therefore there exist open neighborhoods V(p), V(z) of p, z in

X, respectively, such that
(V(p),V(z)) NG(A(H),B(H)) = 0.

Take z,, € V(z). Then it is easy to see that V(p) N S(H,n;z) = 0. If p = z, or

p = z, then by (2) or (3),
V(p) = X\Gx(H,{zn})~ or X\Gx(H,{z})”
satisfies V(p) N S(H,n;z) = 0.

(6) If H, H' are closed subsets of X such that H C H', then

S(H,n;z) C S(H',n; z) for each n.
To see (6), observe that A(H) C A(H') and B(H') C B(H) hold. This means
(7) G(A(H),B(H)) c G(A(H"), B(H)).
If 7, ¢ H' or = ¢ H', then
8)  Gx(H,{za}) C Gx(H', {za}) or Gx(H,{z}) C Gx(H',{z}) respectively.

From (7) and (8) and the maximality of V(p;zn, H), V(p;zn, H) C V(p;zn, H')
follows. These prove (6).
Again, using L(y) in place of L(z) above, we can construct {S(H,n;y)|n € N and

H closed in X} satisfying the following (9), (10) and (11):

(9) S(H,n;y) is an open subset of X such that H\L(y) C S(H,n;y) for each n;
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(10) if p ¢ H, then there exists n € N such that p € S(H,n;y)";

(11) if H, H' are closed subsets of X such thatH C H’, then
S(H,n;y) C S(H',n;y) for each n.

We define the stratification S by the following: Let H be any closed subset of X

and let f : N — N2 be a bijection. For n € N, we define
S(H,n) = S(H,i;2) US(H,j : ),

where f(n) = (4, 7). Then by (4), (5), (6) and (9), (10), (11) it is easily checked that

S is the stratification of X, proving that X is stratifiable. g

Corollary 2.1.2. Let X be a space and let Z(X) be the topological disjoint sum of
X and two copies of {0} U{l/n|n € N}. Then F(Z(X)) is MN if and only if X is

stratifiable.

The condition of existence of L(z) and L(y) in the above necessary. In fact,
monotone normality of F(X) does not mean stratifiability of X as shown by the

next example:
Example 2.1.3. There exists a non-stratifiable space X such that F(X) is MN.

Construction. As X, we take the same space X = [0,wn] as in [HLZ73, Example7.6],
which is topologized in such a way that all @ < w; are isolated and basic neighbor-
hoods of w; are sets of the form (a,w;]. Then, as shown there, for each n € N X"
is MN but X is not stratifiable. We show that F(X) is MN. Since the mapping
[ X" = FalX) = {F € F(X) | |[F| < n} with the relative topology, define by

flzq, - yzp)) ={z1, - , 20} for (x4, ,2,) € X"

is perfect, F,,(X) is MN by [HLZ73, Theorem2.6]. Let Z be the topological disjoint
sum of {F,(X)|n € N}, which is also MN. Let g : Z — F(X) be the natural
mapping. Then it is easy to see that ¢ is a closed mapping. Hence by [HLZT73,
Theorem?2.6] is MN. O
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Moreover, for the same space X as above, K(X) = F(X) holds. Therefore MN
and stratifiability of (X) do not coincide. On the other hand, MN of X does not
mean MN of K(X) because there exists a stratifiable space X such that K(X) is

not normal [Bor80].
Theorem 2.1.4. The following statements are true:
(i) For a space, if K(Y“?) is MN, then K(Y') is stratifiable.
(i1) Let X be a space with L(x). If K(X?) is MN, then K(X) is stratifiable.

Proof. (i): It suffices to show that K(Y)*? is MN [HLZ73, Corollary4.2]. To see it,

let f: K(Y)¥ — K(Y“?) be defined by
f((Kl,KQ,' . )) = K] X KQ x ... for (Kl,Kg, . ) € ’C(Y)wo

Then we can show easily that f is the embedding. Since MN is hereditary, (Y )“°
is MN. (ii): It suffices to show that K(X) x L(z) is MN [HLZ73, Theorem4.1]. To

see it, we define a mapping ¢ : K(X) x L(z) — K(X?) by
g((K,p)) = K x {p} for (K,p) € K(X) x L(z).
Then it is easy to see that g is the embedding. Hence K(X) x L(x) is MN. O

2.1.3 Monotone normality of mapping spaces.

Let C(X,Y) be a set of all continuous mapping of X to Y. As its topology, compact-
open topology is well-known. We write by Ck (X,Y) the space with this topology

which has a base consisting of the subsets of the form:
W(Kh e aKny U1> e aUn) = {f € G(X, Y)If(Kz) - Ul for each Z},

where Ky,---, K, € K(X) and Uy,---,U, € 7y. In particular, if all K; are sin-
gletons, then the topology is called the pointwise convergence topology and the

space C(X,Y’) with this topology is written by Cp(X,Y). We define a subclass
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M*(K(X),K(Y)) of C(K(X),K(Y)) as follows: f € M*(K(X),K(Y)) if and only if
/€ C(K(X),K(Y)) and f satisfies the following three conditions (i) f is monotone,
ie., f(K) C f(K")if K,K' € K(X) and K C K", (ii) f is finitely additive for F(X),
ie., f(FLUR) = f(F) U f(F) if Fy, Fy € F(X), (iii) if z € X, then |f({z})] = 1.

Proposition 2.1.5. Cx(X,Y) = M (K(X),K(Y)).
Proof. Define a mapping ¢ : Cx(X,Y) — M, (K(X),K(Y)) by
e(fI(K) = f(K) for any K € K(X) and for any f € Cg(X,Y).

Then ¢(f) € C(K(X),K(Y)) [Mic51l, Theorem5.10.1]. Easily ¢(f) € M*(K(X),

K(Y)) follows. Obviously ¢ is one-to-one. To see the continuity of ¢, let

w(f) e WH{K}Y (Ur, -+, Ur)),

where Uy, -+ Uy € 7v and K € K(X). Then f(K) € (Ui, ,Uy), which means
f(K) C Ule U; and f(K) NU; # 0 for each . Take z; € K such that

Let

k k
O=w (K, U U¢> N\W({z:}, Uy).

i=1

Then O is an open neighborhood of f in Cx (X,Y) and easily we have

To see that ¢ is open, let W(Ky, - ,K,; Uy, -+ ,U,) be any basic open subset of
Ck(X,Y). Let f € W(Ky, -+ ,Kyn;Uh,--+,Up). Then f(K;) € (U;) for each ¢,

which means

(P(f) € W({Kl}a e 7{Kn}; <U1>a Tt <Un>)

Moreover, easily we have
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C W(W(Kla T 7Kn;U17' te 7Un));

proving that (W (K1, -+, Kp; Ui, --- ,Uy)) is open in My (K(X),K(Y)). Thus it
remains to show that ¢ is onto. Let F € M*(K(X),K(Y)). Then f = F|X €
C(X,Y), where X = Fi(X) € K(X). Assume F' # ¢(f). That is, there exists
K € K(X) such that ¢(f)(K) # F(K). Since F' € M*(K(X),K(Y)), f(K) C
F(K), which means that there exists a point y € F(K)\ f(K). Take disjoint open
neighborhoods U,V of y, f(K) in Y, respectively. Since F' is continuous, there exists
an open neighborhood (Oq,- -+ ,0;) of K such that F({Oq,---,0;)) C (U, V,Y).
Take p; € K N O; for each i. Then by F € M*(K(X),K(Y)),

F({pb apt}) = f({ph apt})'

By (i) there, F({p1,--- ,pt}) C f(K). But this is a contradiction to F'({p1,--- ,m})
e (U, V,Y). 0

Lemma 2.1.6. If a space X has a pseudobase Ky such that Koy C K(X), then
M, (K(X),K(Y)) = M, (Ko, K(Y)).
Proof Note that Ky is a dense subset of K(X). So, if we define
p : My(K(X),K(Y)) — M (Ko, K(Y)) by ©(f) = f1Ko

for each f € M*(K(X),K(Y)), then ¢ is one-to-one and ¢(f) € M* (Ko, K(Y)). To

see that o is open, let
W= W({K1}7 T ,{KS}; Ul; T ,03)
be any basic open subset of My (K(X),K(Y)), where for each i K; € K(X) and

Ui = (U1, Ujip)

with Uj; open in X. Let fy be any element of o(W*). Then fo = ¢(f), where

f € W*. Let j be fixed for a while. f(Kj;) € (7j implies that there exists an
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open neighborhood V; = (Vj1,- -+, Viuj)) of K; such that f(V;) C U;. Take p;; €
K;NVj,i=1,---,i(5) and let F = {pj,--- ,pjun}. Then f(F) € U;. Since f €
MY (X, K(Y)), F(F) = {f i)y » Fpa)} and | (py0)| = 1. Since £(F) € 0
for each + = 1,..- ,%(j) there exists s(i) € {1,---,k(j)} such that f(py) € U
and {s(Z)|i=1,---,¢t(j)} = {1, - ,k(y)}. Since Ky is a pseudobase for X, for each
i there exists L; € Kg such that p;; € L; C Vj; and f(L;) € (Ujssy). Also, there
exists Ly € Ky such that

() 1)
KulJLicLyc|JV;

i=1 i=1
Let
116))

O(j) = ﬂ W({Ls}; (Ussy)) " W({Lo}; U;).

Then O(j) is an open neighborhood of f, in M (Ko, K(Y)). It is easy to see 0=

=1 O(j) is an open neighborhood of f, such that
O N (Mg (K(X),K(Y)) C p(W"),
proving that ¢ is open. ]

Theorem 2.1.7. Let X be a compact metric space and let K(Y') be semistratifiable.

Then Ck(X,Y) is MN if and only if Cx(X,Y) is stratifiable.

Proof. Note that X has a countable pseudobase Ky such that Ky C K(X). By

lemmas,
Ck(X,Y) = K(Y)~.

Since K(Y)“® is semistratifiable, being MN and stratifiable coincide by [HLZ73,

Theorem?2.5]. O

We remark that even if X = [0,1] and Y is stratifiable, Cx(X,Y’) need not be

normal [Mic66, Example12.1].
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2.2 Near Metric Properties of Hyperspaces

Near metric properties of the hyperspace of closed, compact and finite subsets of
a space X are examined. In particular, the properties of monotone normality and

stratifiability are investigated.

2.2.1 Introduction

This section aims to examine when a hyperspace of a topological space X possesses
certain general metric properties. Given a space X, which we will henceforth assume

to be Tychonoff, we define a hyperspace of X to be one of the following:

H(X) ={A C X : Ais non-empty and closed in X},
K(X)={Ae€H(X): Ais compact} and

F(X) ={A € H(X) : A is finite}.

The set H(X) is given the Vietoris topology, that is, the topology generated by sets
of the form [U;...Uy,] = {A € H(X) : A C|JU; and ANU; # B}, where each U;
is a non-empty open subset of X. The subsets K(X) and F(X) of H(X) are given
the subspace topology. The map z +— {z} embeds X as a closed subspace of H(X).

We determine when the hyperspaces H(X), K(X), F(X) are monotonically nor-
mal, stratifiable or cosmic (definitions are given below). The case of H(X) is brief—
X must be compact and metrisable. On the other hand, properties of F(X) will
be seen to mirror those of (finite powers of) the space X. The situation for K(X)
is murkier. We essentially show that K(X) is monotonically normal if and only if
either IC(X) = F(X) or K(X) is stratifiable. In addition, we give a consistent and
independent criterion for (X) to be cosmic. From this follows a consistent and
independent criterion for a space to be separable metrisable. To achieve this we
additionally present some results on function spaces in the compact-open and the

pointwise topologies.
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A space X is monotonically normal (MN) if, for each pair (A, B) of disjoint
closed subsets of X, there is an open subset H(A, B) of X such that

() ACH(AB)CH(AB)CX\B

(iil) AC A’ and B’ C B implies H(A,B) C H(A', B').

It will be convenient, however, to use a “local” characterisation of MN:

for every point = and open neighbourhood U of z, there is an open neighbourhood
V(z,U) of z such that V(z,U)NV(2",U") #0 = z €U orz’ €U.

Without loss of generality, we can assume that V(z,U) C U and that V(z,U) C
V(z,U") for U C U’. 1t is sufficient for V to be defined for members of a base for
X. Monotone normality is a hereditary property and is preserved by closed maps.

Stratifiability can be thought of as “monotone perfect normality”. A space X
is stratifiable if, for each closed subset A of X, and natural number n, there is an
open subset G(A,n) of X containing A such that

(i) G(A,m) C G(B,n) whenever AC Band m >n

(i) A=[G(A,n), and (iii) A=G(A,n).

A space is stratifiable if and only if it is both monotonically normal and a o-
space (possesses a o-discrete network). Recall that a space is cosmic if it possesses
a countable network. Then a space is separable and stratifiable if and only if it is
both monotonically normal and cosmic. A result of Heath’s, which we shall use in
the sequel, states that if S is a space with a countable limit point, then X x S is
MN only if X is stratifiable.

The reader is referred to [Gru84] for a survey of these and other generalised

metric properties. References for all the facts quoted above will be found there.

2.2.2 The Space of Closed Subsets

An instance of a theorem of Fedorchuk (Theorem 4.20) in [HH92| states that a
compact Hausdorff space X is metrisable if and only if H(X) is hereditarily normal.

Since normality of H(X) implies the compactness of X, we have the result proved
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directly in [BM]:

Theorem 2.2.1 (Brandsma and van Mill). The hyperspace H(X) is monoton-

ically normal if and only if X is compact melrisable.

For the same reason, H(X) is cosmic or stratifiable if and only if X is compact
metrisable. Thus, in this respect, H(X) is “too large” to possess interesting near

metric properties without it being compact and metrisable.

2.2.3 The Space of Finite Subsets

In contrast to the case for H(X), properties of F(X) are much closer to those of X.

We will use two main facts:

(1) that F(X) is the countable union of the closed subspaces F,(X), for n € w,

where F,,(X) = {4 € F(X) : |A| < n}.

(2) that the mapping 7, : X™ — F,(X) is a closed, continuous, surjection (and
therefore transfers a “point and open set” MN operator on X™ to one on F,(X)

in the standard way).

Theorem 2.2.2. Let X be a space. Then the following are equivalent:
(1) X?%is MN
(2) X™is MN for alln € w
(3) F(X) is MN

Proof. The equivalence of (1) and (2) is shown by Gartside in [Gar93|, who proves
the more general result that the product of a finite collection of spaces is MN, if
the product of any pair is MN. In the above case, let us suppose that X2 has MN
operator V2, and write
V2((2,y), Us x Uy) = V2((2,9), Uz x Uy) x VZ((2,y), Uz x Uy).
We may suppose that V2 is symmetric in the sense that V2((z,y),Us x U,) =
V2((y,z),U, x Uy). (This can be achieved by re-defining V?((z,y),U, x U,) as

59



V2((Qf,y),Ux X Uy) ﬂv2((ya$)7Uy X Uz)vl)'

Then V*((zy...2,), U1 X ... x U,)

n n

= mvfl((xl7$i)7Ul X Ul) XX ﬂvfn((xnamz)7Un X Uz)

i=1 i=1
is an MN operator on X", as required.
(1) = (3) By the above, we have an MN operator V", defined on each X™,
and by fact (2), each F,(X) is therefore MN with an MN operator V,,. We define

what we shall show is an MN operator on F(X) by

Vo{zy. ..z}, [Ur ... Uy))

2
%4

= ﬂvfl((if»‘bﬂ?i),Ul X U)oy ((zn, 25), Up x Uy)

i=1 i=1

where [Uy ... U,] is a basic open set containing {z;...z,}, and the U; are pairwise
disjoint with z; € Uj.

We prove that V,, is an MN operator by comparing V,, and the restriction of V,
to Fn(X); specifically, we check that, for £ < n,

Vol{zr ...z}, [Ur .. Uk)) N Fou(X) CVa{zr. ..z}, [Ur .. Ui)). (%)

For suppose that(x) holds, and that

Vol{z1.cae}, (U U ) N Vo{yr - - ym)s (W ... Wh)) # 2.

Then this non-empty intersection is witnessed by a point in JF,(X), where n >

max(k, m) (the inequality can be strict). By (%),

Valzy ..z}, [Ur . U) N V{y1 - oy}, [Wh - .. Wia]) # @

Since we know that V,, is an MN operator on F,(X), either
{z1... .z} eWi.. Wy] or {yi...ym} €[Ur...Ugl.
Hence V,, is indeed an MN operator on F(X).
So, it remains to check that () holds. Now V,,({zy ...z}, [U; ... Us]) is defined

to be W# ( U(a1...an)€w;1({zl‘..xn} Vn((al T an)? Tr;l([Ul cee Un]))) (Where W#(S) = {F
€ FulX) : 7, F CSY). Let {z1...2n} € Vu{z1... 2}, [U1 ... Uk]) N Fn(X) (s0
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k<m<n). Let (by...by) € m, ({z1...21}) (so every b is some z, and every z is
some b).

We want to show that (by...b,) € V*((a1...an), 7, ([Uy...Uy])) for some
(a1...a,) €, ({z1...za}).

Each z is in one set of the form ﬂle ij ((zj,z:), Uj x U;) (these sets are disjoint,
since the U; were assumed to be), and for every j, 1 < j < k, some z (possibly more
than one) is in ﬂle Vﬁj((a:j,a:i), Uj x Uy).

Choose a; to be the z; such that b, € ﬂle ij((a:j,xi), Uy xUs) for 1 <1< n.
Then {a;...an} = {z1...2x},50 (a1...a,) € 7, ({z1-..7}) as required.

Denoting by ps; the index such that a; = Tp,;, We have that

by € ﬂf:l ij((aj,ai), Upa, X Up;) = Niza Vflzj((aj7ai)7 Upa,; % Upa,)-

Finally, looking at the definition of V™ in terms of V2, we can see that (b;...b,) €
Vr((ar...an),Up, X ... x Up, ) € V*((a1...0,), 7, ([Us...Ux])). Thus we have
proved (x), and the proof is complete.

(3) = (1) We will use only the fact that F»(X) has an MN operator V. Write,

for  # y,
V{2, uh U Uy)) = Vel yh U, U)), Vo ({0}, [0, U3
where = € Vz({z,y}, [Us, Uy]) € Uy and similarly for y; and
V({z}, [Uz]) = [V(2, Us)].
Then define V2 by
V2((x,y),Um X Uy) =
(Ve yh U, U N V@, Un) ) (Vo (U, Ul NV (5, Uy) ),

where U, and U, are disjoint if z # y, and equal if z = y. It can easily be checked

that V2 is an MN operator on X?2. O
Following immediately from this is a result of [MK87] :

Corollary 2.2.3 (Mizokami and Koiwa). X is stratifieble if and only if F(X)

is stratifiable.
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Proof. The reverse implication is obvious. For the direct implication, let X be
stratifiable. Then every finite power of X is stratifiable and therefore MN, thus
F(X) is MN. Moreover, each finite power of X is, since stratifiable, a o-space.
Then F(X) is the countable union of closed o-spaces, and therefore a o-space.

Hence F(X) is stratifiable. O
Corollary 2.2.4. If F(X) is MN then F(X)" is MN Vn € w

Proof. Observe that F(X)" embeds in F(X &...® X). If F(X) is MN, then X2 is
MN by 2.2.2, and therefore so is (X & ... ® X)?2. By 2.2.2 again, F(X @ ... ® X)
is MN, and hence F(X)™ is MN. O

For comparison we have the following example [Gar93]:

Example 2.2.5. There is a space X such that all finite powers of X are MN, but

it is not linearly stratifiable. Thus F(X) is MN but not (linearly) stratifiable.

(A space is s-stratifiable if it is stratifiable as defined above, but the open sets
are indexed by a cardinal « instead of w; and linearly stratifiable if it is x-stratifiable

for some infinite cardinal &. Every linearly stratifiable space is MN.)
2.2.4 The Space of Compact Subsets

If a space X contains no infinite compact subsets, then K(X) = F(X), and we are
back in the situation of the preceding subsection. The first result of this subsection
says that if (X) # F(X) and K(X) is MN, then X is stratifiable. This suggests
that if C(X) # F(X) and K£(X) is MN, then K(X) should be stratifiable. The
second and third results of this subsection show that this conjecture is true under

additional assumptions.
Proposition 2.2.6. If K(X) # F(X) and K(X) is MN, then X is stratifiable.

Proof. Since K(X) is MN, so too is F(X), and all finite powers of X are MN. As
K(X) # F(X), there is a countably infinite non-discrete subset of X. Now X x S

is MN (as a subspace of X?), and X is stratifiable by Heath’s result. O
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Call a space X non-trivial if every non-empty open subset of X contains an
infinite compact subset. When K(X) is MN, as stratifiable compact spaces are
metrisable, this is equivalent to saying: every non-empty open subset of X contains

a convergent sequence, T, — I, such that z, # rgfora < 8 <w + 1.
Theorem 2.2.7. Let X be non-trivial, and K(X) MN. Then K(X) is stratifiable.

Proof. Let us observe first that if X is compact, then K(X) = H(X), and thus
is compact and metrisable. Otherwise it will suffice to show that K(X) is a o-
space. If X is not compact, then, since X is stratifiable, there exists an infinite
discrete family {U, : n € w} of non-empty open subsets of X. For n € w, define
K.={KeK(X): KnU,=0}.

Then, as the complement of the basic open set [ X, U,] in K(X), each K, is closed.
Also, K(X) = |, Kr by the discreteness of {U, : n € w}.

Next we show that, for each n, K, x (w+ 1) embeds in (X). By non-triviality
of X, pick a sequence (27)4<.+1 contained in U,,. Then it is straightforward to check
that A x {a} — AU {z,} defines an embedding of K,, x (w + 1) into K(X).

Thus K, x (w+ 1) is MN, hence K, is stratifiable, and therefore is a o-space.

Thus K(X), as a countable union of closed o-spaces, is a o-space, as required. [

Note that the proof shows that, if (X) is MN and X contains an infinite discrete
family of open sets, each containing a convergent sequence, then K(X) is stratifiable.
For the next result, in the separable case, recall that space is N if it possesses
a countable family A of subsets of X such that for every compact subset K of X
contained in an open set U, there exists an N € N such that K C N CU. It is a

well-known result that
Proposition 2.2.8. K(X) is cosmic if and only if X is Ng.
Theorem 2.2.9. Let K(X) be separable and MN, and suppose that X contains two

disjoint convergent sequences S1 and Sy. Then K(X) is stratifiable.
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Proof. 1t is sufficient to show that XC(X) is cosmic. Since the S; are disjoint compact
sets in X, they are separated by open sets U;. Define K; = K(X\U;). Then K; x
(w+ 1) embeds in K(X) as above, thus K; is separable and stratifiable. Hence it is
N, and so X\U; is Ng. Then X = (X\Uy) U (X\Us) is the union of two closed N

subspaces and hence Ng. Thus K(X) is cosmic. O

The following non-monotone version of Theorem 2.2.7 follows the lines of the

classic proof by Katétov [Kat48|:

Theorem 2.2.10. Let X be non-trivial, and KC(X) hereditarily normal. Then points

of K(X) are Gs.

Proof. Pick A € K(X) and suppose that A # X (if A = X then K£(X) is compact
and metrisable). Then, since X is normal, there exists a non-empty open subset
of X with closure disjoint from A. Inside this closure, pick a non-trivial convergent
sequence, &, — T, With £, Zzgfora < f<w+ 1. Let S = {z,: a <w+ 1}

Define P = {AUF : F C [S\{z,}]*“}and Q@ = {K e K(X) : KNS = {z,}
and K\{z,} # A}.

Then C € Q implies {z,} € Cso PNQ = 0. Also, C € P implies C = AU [
for some I C S, s0 PN Q = 0.

So by hereditary normality, there exists an open set G in K(X) s.t. P C G and
Gna =19

For U = [Uy...Upl], with AU{z,} € U C G, satisfying z,, € Uy, Un N A = 0,
and z,, € U; for i # m, define U™ = [U;...Up_1]. Then A € U™, and also B €
U™ = BU{z,} €U, and z, ¢ B. Forn € w, define G,, = | J{U ™ : U as above}.
Then G, is open and contains A.

Claim: {4} = ), G N (KA U {z.}})

Proof of the claim: Suppose B € G, N(K(X)\{AU{z,}}), B # A. ThenVn € w,
B € G, so BU{z,} € G,and z,, ¢ B. Then BU{z,} € G. But BU{z,}NS = {z,}

and (B U {z,})\{z.} # Aso BU{z,} € Q - contradicting G N Q = 0.
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Hence points of (X) are Gjs. O

2.2.5 Interlude—Function Spaces

Let X and Y be spaces, and write C'(X,Y) for the set of all continuous functions
of X into Y. We abbreviate C'(X,R) by C(X). For A C X and U C Y, define
BAU) = {f € C(X,Y) : f[A] C U}. Letting A range over finite (respectively,
compact) subsets of X and U range over open subsets of Y, the B(A4,U) form
a subbase for the topology of pointwise convergence (respectively, compact-open
topology). Write Cp(X,Y) for C(X,Y’) with the topology of pointwise convergence,
and Ci(X,Y) for C(X,Y) with the compact-open topology.

We explain how the space Cx(X,Y) may be related to the spaces Cp(X',Y"),
K(X) and K(Y). Since the topology of pointwise convergence has been intensively
studied, this provides a useful tool for investigating the compact-open topology.

Let f be a continuous function of X to Y. Lift f to a continuous function
Kf : K(X) — K(Y) by defining Kf(K) = f[K]. This gives a map of Cp(X,Y)
into Cp(K(X),K(Y')). It is straightforward to check that this map is a (topological)

embedding.
Proposition 2.2.11. The map f — Kf embeds Ci(X,Y) into C,(K(X),K(Y)).

Let us apply Proposition 2.2.11 to cardinal invariants of Cy(X). From Proposi-
tion 2.2.11, Cp(X)(= Cr(X,R)) embeds in Cp(K(X), K(R)). Now K(R) is a sepa-
rable metric space, and so embeds in R¥; also, C,(K(X),R¥) = C,(K(X))¥. Hence,
Cr(X)“ embeds in Cp(K(X))“. The following result is a consequence of this last

fact, and well-known results about Cp(Z).

Corollary 2.2.12. If, for alln € w, K(X)" is:
(1) Lindeléf, (2) hereditarily Lindelof,  (3) hereditarily separable,
(4) hereditarily ccc,

then, for alln € w, Cyp(X)™ is:
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(1) countably tight, (2) hereditarily separable,  (3) hereditarily Lindeldf,

(4) hereditarily ccc (respectively).

Part (4) of the above result plays a vital role in the next subsection.

2.2.6 Cosmicity of K(X)

This subsection examines when X(.X) is cosmic, away from the monotone properties

considered above. The following theorem requires the following extra-ZFC axiom:

The Open Colouring Axiom (OCA). If [X]? = Ky U K, is a given partition
where X C R and where Ky is open in [X|?, then either there is an uncountable

0-homogeneous set, or else X is the union of countably many I-homogeneous sets.

For more details, and applications, of OCA, the reader is referred to [Tod89).
We shall be content to note here that OCA follows from PFA, but that ZFC and
(ZFC + OCA) are equiconsistent.

Condition (CK) was defined by Gartside and Reznichenko in [GR]: A space X
satisfies (CK) if there is a o-compact subset Y of X such that for every compact
subset K of X, there is a compact subset L satisfying K C LNY. It is used here

through the following

Theorem 2.2.13 (Gartside and Reznichenko). X has (CK) if and only if

Cr(X) is cometrisable.

Above, a space Y is cometrisable if there is a coarser metric topology on Y, and
for each point of Y a neighbourhood base of metric closed sets. Also for the following
theorem and example, observe, as is well known, that a space Y has Y hereditarily
cce if and only Y™ is hereditarily ccc for all n € w. (A space is hereditarily ccc if it

does not contain any uncountable discrete subspaces.)
Theorem 2.2.14 (OCA).

(1) K(X) is cosmic if and only if K(X)* is hereditarily ccc and X has (CK).
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(i) K(X) is separable metrisable if and only if C(X)* is first countable and hered-

ttarily ccc.

Proof. Let us first suppose that K(X) is cosmic. Then X is Ny and therefore has
(CK) as observed in [GR]. Also, cosmicity of K(.X) implies cosmicity of K(X)“, and
therefore KC(X)* is hereditarily ccc. Conversely, suppose that K(X)“ is hereditarily
ccc and X has (CK). Then Cy(X) is cometrisable, and, by Corollary 2.2.12, is
hereditarily ccc in all of its finite powers. By a theorem of Gruenhage [Gru89),
originally proved under PFA, but subsequently shown by Todorcevi¢ [Tod89] to
hold under OCA, Cy(X) is cosmic, which is equivalent to Cy(X) being Ry. Then X
is Ny, and hence IC(X) is cosmic.

Now suppose K(X) is separable metrisable, then clearly C(X)¥ is first countable
and hereditarily ccc. Conversely, if I(X) is first countable then, by Proposition 18
of [GR], X has (CK), and, as above, K(X) is cosmic. Hence (Proposition 2.2.8)
X is first countable and Ny. But first countable Xy spaces are separable metrisable
(see [Gru84]). Finally, X is separable metrisable if and only if (X) is separable

metrisable. ]

Example 2.2.15 (b = w;). There is an uncountable subset X of the Sorgenfrey
Line such that IC(X)¥ is hereditarily ccc and first countable (and hence X has

(CK)), but K(X) and X are not cosmic.

Construction. Using b = w,, and observing that any discrete subspace is left sep-
arated, the space X = A[<j| given by Todoréevié¢ in Theorem 3.0 of [Tod89] is a
subspace of the Sorgenfrey Line (with left-facing topology) of size w; such that X"
is hereditarily ccc for all n. It is clear that X, and therefore KC(X), does not possess
a countable network.

Observe that the compact subsets of X are homeomorphic to countable compact
ordinals, and so a basic open neighbourhood of an element A of K(X) is composed of

pairwise disjoint basic open intervals in the Sorgenfrey Line, whose right-hand end-
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points are points of A. From this one can easily check that K(X) is first countable.
Suppose that A were an uncountable discrete subspace of X. Then for every
A € A there is an open U* = [Uf... U2 ] such that Y4 N A = {A}. We may
assume that each U is basic, and, by counting, that n, — n for all A € A. Let 2
be the first point of A in U#, and y* the corresponding right-hand end-point.
Then, setting p(A) = (z2,yf,... ,24,y4), P = {p(A) : A € A} is a subset of
X?" each point with open neighbourhood VA = UA x UA x ... x UA x UA. If P
is countable then distinct A, A’ give the same points in X?*, and hence A € U4'. If
P is uncountable, then since X?" is hereditarily cce, P cannot be discrete, so there
exist distinct A, A’ such that p(A) € V4', and hence A € U#. This contradicts the
discreteness of A. Thus K(X) is hereditarily ccc. By a similar method, K(X)" is

hereditarily ccc for all n € w. O

Corollary 2.2.16. The statement: ‘A space X is separable metrisable if and only
if K(X)* is first countable and hereditarily ccc’ is consistent and independent of Set

Theory.

2.2.7 Open Questions

The key remaining questions seem to be the following.

Question 7.1. Does K(X) # F(X), and K(X) MN, imply that X(X) is stratifiable?
Question 7.2. Does K(X) # F(X), and K(X) hereditarily normal, imply that X (X)
is perfectly normal? What if X is non-trivial?

Problem 7.3. Determine those spaces X such that K(X) is stratifiable.

Remark. The results of subsections 2.2.3 and 2.2.4 were obtained independently
by the first two and last two authors. Subsection 2.2.5 is joint work. The final

subsection is due to the first two authors.
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2.3 On perfect mappings between hyperspaces of
compact subsets

We construct three perfect mappings between hyperspaces of non-empty compact
subsets with finite topology. These are used to determine under what kind of con-
ditions hyperspaces and mapping spaces become monotone normal, stratifiable and

O'-SpaCGS.
2.3.1 Introduction.

All spaces are assumed to be regular Ty-spaces. For a space X, let K(X), F(X) be
families of non-empty compact subsets, non-empty finite subsets of X, respectively.
N always denotes positive integers. We assume that K(X) has finite topology, that

is, the base of which consists of all subsets of the form

(Up, - ,Uy) = {K € K(X)

k
KCUUz‘, KﬂUi#(Z)foreachi},

i=1

where {Uy, - - - , U} is a finite family of open subsets of X. We write (Us|i = 1,--- , k)
or (U) in place of (Uy,--- ,Ux), where U = {Uy,--- ,Ux}. Let Cx(X,Y) be a
mapping space with compact-open topology, that is, it has the base for topology

consisting of
W(Ky, - Kp;Ury- -, Un) = {f € Cx(X,Y)|f(K:) C U for each i},

where K1, , K, € K(X), Uy,--- ,U, are open in Y and n € N.

In this section, we establish three perfect mappings from hyperspaces to hy-
perspaces. These are applicable to the determination of monotone normality and
stratifiablity of hyperspaces. On the other hand, we establish the relation between

hyperspaces and mapping spaces. As for undefined term, refer to [Gru84].
2.3.2 Operators on hyperspaces.
Theorem 2.3.1. Let ¢ : K(X) x K(X) — K(X) be defined by the following:

o((K,L)) = KUL, K,L € K(X).
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Then p is a perfect mapping.

Proof. It is obvious that ¢ is onto. To see the continuity of ¢, let U = (Uy, -+ , Uy)
be an open neighborhood of p((K, L)) = K U L in K(X). Let

UK) = {UilU:sN K # 0},
UL) = {UilU:N L # 0}

Then (U(K)), (U(L)) are open neighborhoods of K, L in K(X), respectively. It is
easily checked that W = (U(K)) x (U(L)) is an open neighborhood of (K, L) in

K (X)? such that (W) C U. Hence ¢ is continuous. Note that for each K € K(X),
(1) ¢ (K) = {(Ax, By) € K(X)*|A\U By = K}.

This means ¢~ '(K) C K(X) x K(X), and therefore ¢ !(K) is compact because
K(K) is compact by [Mic51, Theorem 4.9]. To see the closedness of ¢, let O be an
open neighborhood of p=}(K) in K(X)2. As seen in (1), o Y K) = {(4x, B))|) €
A}. For each ), there exists an open neighborhood U(X) = (U(X)) x (V(A)) of
(Ay, By) in K(X)? such that U()\) € O, where U()), V(}) are finite families of open
subsets of X. Since ¢ 1(K) is compact, there exists a finite subset Ay of A such

that
(2) e {(K) c | HOWIX e A} C O.
Let

W = U UV)IX € A}

Then W' is a finite open cover of K in X. Let {P(6)|6 € A} be the partition of K

by W', where |A| < 8. (That is, for each 6,

P(E) = K 0 () \ U wie))
for some W(8) C W'.) For each 6§ € A, let

(3) W) = | W e WP(6) c W}
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Then W = {W(6)|6 € A} is an open cover of K, which means that (W) is an open
neighborhood of K in K(X). To see o~ {((W)) C O, let (4, B) € ¢~ '{((W)). This
means AU B € (W). Let

C = PO IANW () # 0},
D = | J{P(#) |BNW(6) # 0}.

Then (C,D) € ¢ '(K). By (2), there exists Ay € Ag such that (C,D) € U(X).
Then we can show A € (U(Xg)). Since C' C |JU( o),

UP@IAnW @) # 0} < [ Ju(ho).

This combined with the definition of W (6) in (3) implies

Ac| Jw@)IAnW(8) # 0} c | Ju).

On the other hand, let U € U(\g) be any element. Since C N U # @, there exists
5 € A such that P(§) " NU # 0 and ANW(S) # 0. P(6) NU # § implies
U N P(§) # @, which combined with (3) implies W(§) C U. Hence ANU # 0.
Thus we have A € (U(N\g)). Similarly we can show B € (V()\g)). Hence we have

© (W) € O, proving that ¢ is a closed mapping. O
Theorem 2.3.2. Let p : K(X xY) — K(X) x K(Y) be defined by the following:
p(K) = (m(K), m(K)), K eK(X xY),

where m : X XY — X, m : X XY — Y are natural projections. Then p is a

perfect mapping.

Proof. Obviously ¢ is onto. To see the continuity of ¢, let o(K) = (L, M) and let
(U) x (V) be any basic open neighborhood of (L, M) in K(X) x K(Y), where U, V

are finite open covers of L, M, in X, Y, respectively. Let

W={UxV|UxV)NK#0,UeclU,V eV}

67



Then it is easy to see (W) is an open neighborhood of K in K(X x Y') such that
e((W)) € (U) x (V). Let (L,M) € K(X) x K(Y). Since L x M is compact,
e Y(L,M)) is compact in K(X x Y). We show that ¢ is closed. Let (L, M) €
K(X) x K(Y) and let O be any open neighborhood of =1((L, M)) in K(X x Y).

Note that
e (L, M) = {Ko € K(X X Y)|m(Ka) = L,m(Ky) = M}

Since ¢~1((L, M)) is compact, there exists a finite family {O|a € Ag} of basic open

subsets of (X x Y) such that

) (L) € | {0

aer}cO,

-~

where for each a € Ag, Oy = (Uy, X Vo,li = 1, -+ ,ta) and all U,,, Va, are open in

X, Y, respectively. Let

Up ={Usli=1,-- 1o}, a € A,

Vo = {‘/a1|7': L. 7ta}> a € Ay.

Then each U,, V, are open cover of L, M, in X, Y, respectively. Let {P(&)]i =
1,--+,m} be the partition of L by Uy = |J{Ua|lax € A}, that is, for each ¢ there

exists U(6;) C Uy such that

0# P(6) = L0 () \J@e\u(6) )

Let

U&) = (\UB),i=1,-+-,m.

Then the following is easily checked:

(2) Le{U(&)i=1,---,m)and

for each U € Uy, L(6) NU # 0 if and only if U(8;) C U.
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By the same method, we get a finite family {V (x;)|j = 1, -+ ,n} of open subsets of
Y and a finite cover {M(u;)[j = 1,--- ,n} of M by compact subsets of Y satisfying

the following (3):

() M€ (V(uy)lj= 1, ) and
for each V € Vy = U{Vala € A},

M(p;) NV # 0 if and only if V(u;) C V.
Note that
{L(&) x M(p;)le=1,--- ,m,j=1,--- ,n}
is a cover of L x M by compact subsets of X x Y. We show the following inclusion:
e UG)E=1, m) x (V(pglj =1,-- ,n)) CO.

To see it, let K’ be any element of the left term above. If we let p(K') = (L', M’),

then
L eU@i=1,-,m), M e (Mu)lj=1,--,n).
Let
No = {6, 4) K" N (U() x V(15)) # 0},

Then p(Ng) = {1, ,m}, p2(Ng) = {1,--- ,n}, where p,, py are projections such

that p1((m/,n')) = m/, po((m/, 7)) = n'. It is easy to see
(4) K' € (U(8) x V(p)|(i, 5) € No).
Let

Ko = [ J{L(:) x M(u;)|(, j) € No}.

Then Ky € K(X x Y) and ¢(Ky) = (L, M). By (1), there exists a € Ay such that

Ko € Oq. Then we show K’ € O,. To see it, let (p,q) € K'. By (4), there exists
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(3,7) € No such that (p,q) € U(&;) x V(). On the other hand, since Ky € O,,

there exists U € Uy, V € V, with U = U,,, V = V,, such that
(U x V)N (L(&:) x M(p5)) # 0,
which combined with (2) and (3) implies
U(6:) x V() U x V.

Thus (p,q) € U x V. Let U € U,, V € V, be any member such that U = U,,,

V =V,,. Because Kj € O,, there exists (t,7) € Ny such that
(U % V) N (L(E) x M) #0.

Both UNL(&) # 0 and VN M(p;) # 0 imply U(6;) C U and V(p,) C V because of
(2) and (3), respectively. Since K' N (U(&) x V (k) # 0 by (4), we have K' N (U x

V) # 0. Hence K’ € O, is proved. This completes the proof that ¢ is closed. [

Corollary 2.3.3. Let ¢ : K(X?) — K(X) be defined by the following:
LP(K) = 7T1(K) UTrQ(K)a K e K:(Xz)a

where m,, Ty are projections onto X such that m1((z,y)) = =, m((z,y)) = y. Then

@ 18 a perfect mapping.

Proof. ¢ is considered to be the composition of both perfect mappings of the two

theorems above. O

In our earlier paper, we established following equivalence on monotone normality
of hyperspaces F(X) of finite subsets of a space X: For a space X, the followings
are equivalent: (i) X? is monotonically normal (for brevity, MN), (ii) X™ is MN for
each n > 2, (iii) F(X) is MN, (iv) F(X)" is MN for each n € N, [FGMS97, Theorem

3.1, Corollary 3.3]. Using this, we establish the following result of the similar type:

Corollary 2.3.4. For a space X, the followings are equivalent:
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(i) K(X) is MN,

(i) K(X?) is MN,
(iii) K(X™) is MN for eachn € N and
(iv) KC(X)™ is MN for eachn € N.

Proof. For the case of K(X) = F(X), this is nothing but the above. Thus we
suppose that there exists K € K(X)\F(X) and we recall that for this case mono-
tone normality and stratifiability of K(X) are equivalent [FGMS97, Theorem 4.2].
Therefore it suffices to show the equivalence of the following statements: (i)’ K(X)
is stratifiable, (i)’ K(X?) is stratifiable, (iii)’ K(X™) is stratifiable for each n € N
and (iv)’ K(X)™ is stratifiable for each n € N.

(iii)” — (ii)” — (i)’ — (iv)’ is trivial. (iv)’” — (iii): By Corollary 2.3.3, there
exists a perfect mapping of K(X?) onto K(X). Since X? is stratifiable, by [Miz96,
Theorem 1(1)] K(X?) has a Gs-diagonal. By [Bor66, Theorem 8.4] K(X?) is also
stratifiable. By repeating the discussion, we can show that K (X ") is stratifiable
for each n € N. Since K(X™) «— K(X™) if m <n, m,n € N, for each n € N (X")

is stratifiable. O
Theorem 2.3.5. Cx(X,Y) — K(X xY) if X is compact.
Proof. We define the embedding G : Cx(X,Y) — K(X x Y) as follows:

G(f) = {(=z, f(2))lx € X}, f e Ck(X,Y).

Obviously G is one-to-one. To see the continuity, let O = (U; x Vjli = 1,--- , k) be
an open neighborhood of G(f) in K(X x Y). Take a finite cover {K;lt = 1,--- , k}

of X by compact subsets of X such that § # K; C U; N f~1(V}) for each i. Then
W= W(K17 ’Kk;‘/h"' a‘/k:)
is an open neighborhood of f in Cx(X,Y) such that G(W) c O. To see the

openness of G, let W = W(Ky, -+, Ki; V4,--+, Vi) be an open neighborhood of f
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in Cx(X,Y). Let C={K;li=1, - ,k} and K = | JK. Let P = {P(6)|6 € A} be
the partition of K by K, i.e., for each § € A, P(8) = [JK(6)\|JK\K(8)), where
K(6) is the subfamily of K. For each § € A, let V(8§) = ({Vi|K; € K(6)} and
let U(6) = f (Va)\U(K\K(6)). We define an open neighborhood O of G(f) in
G(Ck(X,Y)) by the following: If X = K, then

O = (U x V(6|6 € A)NG(Cx(X,Y))
and otherwise
O = ({U() x V()6 € A} U{(X\K) x Y}).
Then it is easy to see that O C G(W). This completes the proof. O

Corollary 2.3.6. If X is a compact space, then Cy(X,Y) is the subspace of the

perfect pre-image of K(X) x K(Y).
Proof. K(X xY) is the perfect pre-image of X(X) x K(Y) by Theorem 2.3.2. O

Corollary 2.3.7. If X is a compact metric space and K(Y) is stratifiable, then
Ck(X,Y) is stratifiable.

Proof. Since X x Y is stratifiable, by [Miz96, Theorem 1(1)] (X x Y') has a G-
diagonal. Then by the above, Cx(X,Y) is stratifiable. O

Corollary 2.3.8. If X is a compact metric space and K(Y) is a o-space, then

Ck(X,Y) is a o-space.

Proof. Since X x Y is a o-space, by [Gru84, Theorem 4.6] and [Miz96, Theorem
1(1)] K(X x Y) has a Gs-diagonal. Moreover (X x Y) is a ¥-space as the perfect
pre-image of a o-space [Gru84, pp. 450-451]. Hence (X x Y'), and necessarily
Ck(X,Y), is a o-space by [Gru84, Theorem 4.15]. ]
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2.4 On stratifiability of mapping spaces

We give a mapping space C(X,Y") that is not M3, where X is a compact metrizable
space and Y has the weak topology with respect to compact metrizable spaces, and

show that C'(X,Y) is M3 if X is a compact metrizable space and K(Y') is Ms.

2.4.1 Introduction.

All spaces are assumed to be regular T;-spaces. N always denotes the all positive
integers. The terms “locally finite”, “closure-preserving” are abbreviated to LF, CP,
respectively. For a space X, let X(X) be the set of all non-empty compact subsets
of X and F(X) the set of all non-empty finite subsets of X. We give IC(X) finite
topology in the sense of Michael [Mic51], the base for which consists of all subsets

of the following type:

(U, Ur)

— {Ke/C(X) ‘KcU{Um‘:L---  k} and KﬂUﬁé@foreachi},

where {Uy,- -+, Uy} C 7(X), the topology of X, and k € N. Let C(X,Y") be the set
of all continuous mappings of a space X into a space Y and it have compact open

topology, the base for which consists of all subsets of the following type:
W(Ky, - KpUpy - JUn) = {f € C(X,Y)f(K) CUgfori=1,--- ,n},

where Ky = {K1, -+, K.} € FI(K(X)) and Uy = {U1,---,Ux} € F(r(X)). (For
brevity, such subsets are written as W (Ko;Up).) We write the space with this topol-
ogy by C(X,Y) again. It is known that for regular spaces X, Y, K(X) and C(X,Y)
are regular, [Mic51, Theorem 4.9.10], [Eng88, Theorem 3.4.13].

Let {X,|a € A} be a closed cover of a space X. We say that X has the weak
topology with respect to {X,}, if any subset of X whose intersection with each X,
is closed in X, is necessarily closed in X. We say that X is dominated by {X,} is

B C X is closed whenever it has a closed intersection with each member of some
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{Xala € A’} which covers B. If X is dominated by {X,}, then X has the weak
topology with respect to {X,}, but the reverse is not true. In [Bor71, Question 2.3]
Borges posed the following question: If X is dominated by a family of metrizable
subspaces {X,} and S is a compact space, then is C'(S, X) M37 In this section, we
construct a space X having the weak topology with respect to compact metrizable
spaces such that C'(S, X) is not M3, where S is the compact convergent sequence.
This is a negative partial answer to the Borges’ question. As the positive result, we
settle that if X is a compact metrizable space and K(Y') is M3, then C'(X,Y’) is M3.

As for the definition of M3s-spaces, refer to [Bor71].

2.4.2 Example.

Example 2.4.1. There exists a space X having the weak topology with respect to

compact metrizable spaces such that K(X) is not Ms.
Construction. Let us introduce the following notation:
Ny={1}, Ny= Ny = --- = N,
T(n) = H{N'L|7’ = 1) o 7”}7 ne N7

T(w) = [J{Nili € N},
T=| fT(n)n e N}UT(w),

F(klkg s k:n—l; k)
= {p € (U{T(z)|z > n}) U T (w) ' the first £ coordinates of p is kiky - - - k‘n_lk},
(kikz-- ko 1) € T(n—1), k€N,
T(a) ={a}U{(nine---nx)lk e N}, a = (niny---) € T(w).

We topologize T' by defining neighborhood bases as follows: All points of [ J{T'(n)|n

€ N} are isolated and for each a = (nyny---) € T(w), let the family

{{o} u{(ni---m)|k = n}in € N}
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be the neighborhood base at a. Let S = {w}UN be a convergent sequence such that
n — w as n — 0. Let X be the quotient space obtained from 7" x S by identifying
T(k) x {w}, k €N, and T(w) x {w} with w(k), k € N, and w(w), respectively. Let

¢ be the quotient mapping. Define subspace of X as follows:

X(klkZ te kn—l; k) = (p(F(klkZ e kn—l;k) X S)a (k1k2 v knvl) € T(n - 1)a k€ N7
Xlkiky - kno) = | {X (kika - kno;B)|k € N}, (kiky - kn_1) € T(n — 1),

X(a)=e(T(a) xS), a € T(w).

Obviously each X(a) is a compact metrizable space and it is easily observed that
X has the weak topology with respect to {X(a)|a € T'(w)}. We show that K(z) is

not Mj. For each k € N, let
L(K) = {w(@)} U {w®lt > k.

Then L(k) € K(X) for each k. Assume that K(X) is M3. Then {L(1)} has a CP
closed neighborhood base B in K(X). For each B € B, let B = | J{K|K € B}. Then
B is a neighborhood of L(1) in X. For each subfamily B/ C B, we let B’ = {B|B ¢
B }. In the below, we show that the initial assumption leads to a contradiction. To
this end, we settle the next claims:

Claim 1: There exists p(1) = ¢((1), s1) with s; € N and the subfamily B(1) of

B satisfying the following (1), (2):
(1) L(2) U{p(1)} € Int B for each B € B(1).
(2) There exists k; € N such that
B(1)| X (1; k) is a neighborhood base of L(2) in X(1; k»).
Proof of the claim: Assume the contrary. For each s € N, let
Q(s) = {B € BIL(2) U{p((1),s)} € Int B}.
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Then B = |J{Q(s)|s € N}. By the assumption, for each s there exists an open
neighborhood O(s) of L(2) in X(1;s) such that

(3) BN X(1;s) ¢ O(s) for each B € Q(s).

Let O = |J{O(s)|s € N}. Then O is an open neighborhood of L(2) in X[1]. Since
B is a neighborhood base of {L(1)} in K(X), there exists B € B such that

L(2) € {K N X[1]|K € B} c (0).

Take s € N with B € Q(s). Then this is a contradiction to (3).
Claim 2: There exists p(2) = @((1k,), s2) with s; < s, € N and B(2) c B(1)

satisfying the following (4), (5):

(4) L(3) U {p(1),p(2)} € Int B for each B € B(2).

(5) There exists k3 € N such that

B(2)| X (1ky; k3) is a neighborhood base of L(3) in X (1ky; ks3).
Proof of the claim: Assume the contrary. For each s € N, let
Q(s) = {B € B)|LB) U{p(1), p((1k2), 5)} € Int B}.
Then by (1)
B(1) = {Q(s)ls €N, s > s1}.

By assumption, for each s > s; there exists an open neighborhood O(s) of L(3) in

X (1kz;s) such that
(6) BN X(lky;s) ¢ O(s) for each B € Q(s).

For each s < s, let O(s) = X(lkz;s). Then O = [J{O(s)|s € N} is an open

neighborhood of L(3) in X[lks]. By (2), there exists B € B(1) such that B N
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X(1;ky) € O. Take s € N with B € Q(s) and s; < s. But this is a contradiction to

(6).
Since p(2) # w(2), by (2) there exists B(1) € B(1) such that p(2) & B(1). This

implies
(X, {p(2)}) NB(1) = 0.
On the other hand, by (1)
L(2) u{p(1)} € B(1).

By the same discussion as Claim 2, we can choose p(3), B(3) and k4 satisfying the

following (7), (8), (9):

(7) p(3) = p((1kaks), s3) with 81 < s3 < 83 € N,
(8) B(3) c B(2) and for each B € B(3)
L(4) U{p(1),p(2),p(3)} € Int 5.
9) B(3)| X (1kyks; ky) is a neighborhood base of L(4) in X (1koks; ky).
Using (4) and (5), we can take B(2) € B(2) such that:

L(3) U{p(1),p(2)} € B(2),

(X, {p3)} N B(2) = 0.

Repeating this process, we can choose sequences {p(n)}, {k,}, {B(n)} satisfying

(10), (11), (12): For each n,

(10) p(n) = @((lky- - - kn), Sy) With 51 < s <--- < s, €N,

(11) Lin+1) u{p(1),---,p(n)} € B(n) and

(X, {p(n+ 1D}) N Bn) =0,
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(12) B(n) € B.
Let
K = {p(n)ln € N} U{w(w)}.

Then by (10), K € K(X). But by the latter equality of (11), K & B(n) for each n.

If we let
K(n) = Ln+ 1) U{p(1),--- ,p(n)}, n €N,

then by the former relation of (11) K(n) € B(n) for each n. From the construction,

we can observe that
{K(n)|n € N}U{K} C K(X(a))

for a = (lkgks---) € T(w) and K(n) — K as n — oco. This is a contradiction

because {B(n)} is CP in K(X) by (12). This completes the task. O

Example 2.4.2. There exist a space X having the weak topology with respect to
compact metrizable spaces and a convergent sequence S such that C'(S, X) is not

Ms.

Construction. We show that for same spaces X, S as in Example 2.4.1, C(S, X) is
not Ms. So, we use the same notations as there. Assume that C(S, X) is M. Let

Cy be the subset of C'(S, X) consisting of all members f € C'(S, X) satisfying either
(1) or (2):

(1) f(w)=w(w) and
there exists k € N such that f(n) = w(n) for each n > k and

f(n) € p(T(n) x S\{w}) for each n < k.

(2) f(w) = w(w) and f(n) € ¢(T(n) x (S\{w})) for each n € N.
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Then the subspace Cy is M3. Let fy be a fixed member of Cy satisfying (1) such
that fo(w) = w(w) and fy(n) = w(n) for each n € N. Then f; has a CP closed

neighborhood base A in (. For each A € A, let

[A] = {f(S)|f € A} C K(X).

Then we show that {[A]|A € A} is a CP closed neighborhood base of L(1) = fo(S)
in K, = {f(S)|f € Cy}. To see that it is CP in Ky, let Ay be any subfamily of A

and suppose

£(8) € Ko \ | {[A]l4 € Ao}.

This implies f € Co\|J{A|A € Ao}. Since | J{A|A € Ao} is closed in Cy, there

exists an open neighborhood O of f in Gy such that
0n (U{A|A = A0}> — 9.
Taking f € Cy and the fact that
P(T'(n) x (S\{w})) Ne(T(m) x (S\{w})) =0, n#m,

into account, we can choose the following basic open neighborhood of f in C(S, X),

contained in O:

W({l}a ,{k—l},{w}U{k,lﬁ—1,---};{f(1)},-~~ 7{f(k_1)}7W)

where k € N and W is an open neighborhood of {w(w)} U {w(k),w(k+ 1),---} in

U{e(T(n) x (S\{w}))|n > k} Up(T(w) x S). These imply
Ko NI} L= DLW 0 (A4 € Ad}) = 0

Therefore {[A]|A € A} is CP in K. Similarly, the closedness of each [A4] follows. It
is obvious that {[A]|A € A} is a neighborhood base of L(1) in Ky. Here, we note
that the essential part of the discussion of Example 2.4.1 can apply to this case.

Hence we can get a contradiction. O
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2.4.3 Stratifiability of C'(X,Y) via K(X).
In spite of the result in Corollary 2.3.7, we state the following with the direct proof:

Theorem 2.4.3. If X is a compact metrizable space and K(Y') is Ms, then C(X,Y)

18 Mg.

Proof. Since Y — K(Y), Y is M3, and consequently submetrizable. Therefore there

exists a sequence {U(n)|n € N} of LF open covers of Y satisfying the following:

(1)  Foreachn, Un+1) <U(n) and if y £ v/, v,y €Y, there exists n € N
and neighborhoods V (y),V(y/') of y,9’ in Y, respectively, such that

St(V(y),U(n)) NV (y) = 0.

(This condition is nothing but that Y has a regular Gs-diagonal in the sense of
Zenor [Zen72].) Since X is compact, by [Eng88, 3.12.27(j)] C(X,Y) is embedded
into (X x Y) by the embedding G : C(X,Y) — K(X x Y) defined by

G(f) = {(z f(2))lz € X}, [ € C(X,Y).

So, it suffices to show that G(C(X,Y)) is M3, that is, it has a ¢-CP quasi-base.
Since X is compact metrizable, there exists a countable base O for X closed under
finite unions. Let K be the family of closures of members of O. For each n, let A(n)
be the totality of pairs 6 = (KC(6),U(6)), where K(6) € F(K) is a cover of X and
U(6) € F(U(n)), the members of which are in a one-to-one correspondence. For
each 6 = (KC(6),U(6)) € A(n) with K(6) = {K,--- , Ks} and U(6) = {Un,- -+ ,Us},

let

S8

V() = [ (X x Y\(Ki x (Y\UL)).

i=1
Then it is easy to see that V(n) = {V(6)|6 € A(n)} is an open cover of G(C(X,Y))

in (X xY). We define a subspace Ky as follows:

Ko = {L € K(X x V)|nx (L) = X},
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where mx is the projection onto X. Then it is easily observed that Ky is closed in
K(X xY). We settle the next two claims:

Claim 1: V = | J{V(n)|n € N} has the following property:

(2) If feC(X,Y) and L € Ky such that G(f) # L, then

there exists V € V such that G(f) € V and Cli,(V NKy) C Ko\{L}.

Proof of the claim: There exists (z,y) € L\G(f). This implies y # f(z). There-
fore by (1) there exist n € N and open neighborhoods V (y), V(f(z)) of y, f(z) in

Y, respectively, such that
SV (f(z)),U(n)) NV (y) = 0.

Take a cover { Ky, K2} of X such that K1, Kz € K,z € Int K1 € K7 C f~YV (f(z))),
z € X\K; and X\ Int K7 C K». Then it is easy to see that (X x Y, (X\K2) x V(y))

is an open neighborhood of L in (X x Y) such that
(X x Y, (X\K2) x V(1)) NSHG(), V() = 0.

From this relation, any member V' of V(n) containing G(f) satisfies (2).
Claim 2: V|G(C(X,Y)) is a o-LF family of open subsets of G(C(X,Y)).

Proof of the claim: Note that
G(C(X,Y)) NV (8) = GIW(K(8); U(5)))

for each 6 € A(n), n € N. So, it suffices to show that for each cover K* =

{Ki, -+ ,Ks} € F(K) and n € N,
Vo = {W(K*;U(9))]6 € A(n),U6) = {Uy,--- ,Us} € F(U(n))}

is LF in C(X,Y). To this end, let fy € C(X,Y). Since X is compact, there exists
a finite open cover {O(i)|t = 1,--- ,k} of fo(X) in Y such that for each i

Ui) = {U e Un)|U NO(E) # 0}

81



is finite. Then Uy = | J{U(@)] = 1,--- ,k} is also finite. Take C1,---,Cx € K(X)

such that

~

fO € W(Cla' v 7Ck70(1)7 ’ ,O(k)) =W.

To see that W intersects only finitely many members of V,, suppose W N W(K*;
U(8)) # B, where W (K*,U(6)) € Vy. Take g € W N W(K*;U(6)). Then for each
K; € K*, K;NC; # 0 for some ¢, which means U; N O(2) # 0. Hence U(6) C Up.

Finally, we show that G(C'(X,Y)) is Ms. By [SM98, Theorem 2.2] there exists a
perfect mapping ¢ of (X x Y) onto K(Y). Let ¢y = ¢|Kq. Then y is also perfect
because Ky is closed. By the assumption, there exists a o-CP closed quasi-base B
for ¢o(Ko). Let W be the family of all finite intersections of members of V. By
Claim 2, W|G(C(X,Y)) is also o-LF in G(C(X,Y)). We define

P = (g5 (B) U (g ' (B) AW))IG(C(X,Y)).

Then it is easily checked that P is a o-CP family in G(C(X,Y)). To see that P is a
quasi-base for G(C(X,Y)), let f € C(X,Y) and O an open neighborhood of G(f) in
Ko. As the first case, suppose ¢y (2o (G(f))) € O. Then ¢f(0) = wo(Ko\o(Ko\O))

is an open neighborhood of ¢o(G(f)) in ¢o(Ko). There exists B € B such that
vo(G(f)) € Int B C B C ¢}(0).
This implies that
G(f) eIntPc PcONG(C(X,Y)),

where P = ¢, (B) NG(C(X,Y)) € P. As the second case, suppose ¢g ' (¢o(G(f)))
¢ O. By Claim 1, there exists W € W with G (f) € W and an open neighborhood
G of w5 (o(G(f)))\O in Ky such that W NG = 0. By the same discussion as the

first case, we can take B € B such that

G(f) e Int gy {(B) C w5} (B) c OUG.
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Then P = o '(B) N W N G(C(X,Y)) € P satisfies
G(f)eIntPc PCONG(C(X,Y)).

Thus we have shown that P is a 0-CP quasi-base for G(C(X,Y)), completing our

task. O
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2.5 On the embedding and developability of map-
ping spaces with compact open topology

We investigate the relation of mapping spaces with compact open topology and
hyperspaces of compact subsets with finite topology. Using one of the results, we
show the Moore spaces with a regular Gs-diagonal are hereditary to this mapping

spaces.

2.5.1 Introduction.

All spaces are assumed to be regular Ty. For a space X, we denote by 7(X) the
topology of X. Throughout this section, letter N means the set of all positive
integers. For families U, V of subsets of X, U < V means that for each U € U,
there exists V € V such that U C V. Let K(X) be the set of all non-empty compact
subsets and for the topology of X(X), we use here the finite topology, which has the

base consisting of all subsets of the form

<U17"' 7Uk>

- {Ke/C(X) lKCU{Uilizl,u- k) andKﬂUz-;é@foreachi}.

where Uy, --- , U, € 7(X), k € N. For brevity, we use frequently the notation ()
or (Usli = 1,--- , k) in place of (Uy,--- ,Us), where U = {Uy,--- ,Ux}. As known
already, if X is regular Ty, then so is K(X). As for the fundamental properties of
K(X), refer to [Mic51]. For spaces X, Y, let C(X,Y) be the set of all continuous
mappings of X into Y. As the topology of C'(X,Y), we accept the compact open

topology, which has the base consisting of subsets of the form
W(Ky, - Kn;O1,-++,0,) = {f € C(X,Y)|f(K;) C O; for each 1},

where K; € K(X) and O; € 7(Y) for each 1. This space is written as Ci(X,Y).
In the first part, we investigate the relation between mapping spaces and hyper-

spaces. We show that for a space X, Cx(X,Y) is embedded into the product spaces
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of hyperspaces. This embedding is shown to have some additional properties for
special spaces X. The main result is used in the second part.

Next, we consider the classical problem on heredity of topological properties:
Let P be a class of spaces and let X be a compact or hemicompact space. If Y € P,
then does Cx(X,Y) € P? Until now, we have some results for P of metric spaces
[Ared6], Ng-spaces [Mic51] or paracompact R-spaces [O’MT71] etc. But we do not
know whether Moore spaces are hereditary to C(X,Y’) when X is a compact space.
Here, we show that this is the case for Moore spaces with a regular Gg-diagonaL

As for undefined terms such us Gs-diagonals, wA-spaces, etc, refer to [Gru84).

2.5.2 The embedding of C(X,Y) into hyperspaces.

Theorem 2.5.1. Let K be a compact cover of a space X such that K(X) < K.

Then for a space Y,
Ce(X,Y) = [[{K(K x Y)|K € K}

Proof. Define G : C(P,Q) — 2°%9 as G(f) = {{z, f(2))|x € P}, f € C(P,Q). We
define the embedding ¢ : Ci(X,Y) — [[{K(K x Y)|K € K} as follows:

o(f) = [[{GUIK)IK €K}, feC(X,Y).

Since K covers X, it is easy to see that ¢ is one-to-one. To see the continuity of ¢,
it suffices to show that for each K € K, Gk = 7 - ¢ : Ci(X,Y) - K(K x Y) is
continuous, where g : [[{IC(K x Y)|K € K} — K(K x Y) is the projection.

Let

-~

O={(U; x Vi, ,Upx Vp)

be an open neighborhood of Gk (f) in K(K x Y), where U; € 7(K) and V; € 7(Y)
for each 7. Take a finite compact cover {K;|i = 1,--- ,n} of K such that § # K; C

U; N f-Y(V}) for each i. Then

W =W(Ky,- -, Kn; Vi, , Vo)
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is an open neighborhood of f in Cx(X,Y’) such that Gx (W) C O.

To see the openness of ¢, let
W:W(Kla aKnaV'la 7Vn)

be an open neighborhood of f in Cy(X,Y), where K; € K(X) and V; € 7(Y) for
each 1.

Let P = {P(6)|6 € A} be the partition of K = | {K;|t = 1,--- ,n}, i.e., for each
o €A,

0# P(E) = (K6 \ | JUKNKL®),

where K(6) is a subfamily of {K;}. Take L € K such that K C L. For each 6, let

V(6) = [{VilK: € K(6)},
U = e\ (JIKKE)).

We define an open neighborhood O of ¢(f) in ¢(Ck(X,Y)) by the following:

5 JeGXLY)) N (U(8) x V(8)]6 € A)) if L\NK =0,
P(Ch(X,Y) N ({U(6) x V()6 € AYU{(L\K) x Y'})) if L\K # 0.

Then it is easy to see that O C (W). This completes the proof. O

We remark that by virtue of the above theorem, when X is compact, Ci(X,Y)
is embedded into (X x Y) with the embedding G : Cp(X,Y) — K(X x Y) such
that for each f € Cy(X,Y), G(f) is the graph of f.

A space X is called hemicompact [Ared6] if there exists a countable compact

cover K of X such that K(X) < K.

Corollary 2.5.2. If X is a hemicompact space, then for a space Y Cp(X,Y) —
[{K(K; x Y)|i € N}, where {K;|i € N} C K(X).

In the embedding theorem, we do not have any information on what kind of a
subset of (X x Y) ¢(Cy(X,Y)) is. The next two theorems give it for compact

spaces X.
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Theorem 2.5.3. If X is a compact metrizable space and Y has a Gs-diagonal, then

Cy(X,Y) is homeomorphic to a Gs-set of K(X xY').

Proof. Let B be a countable quasi-base for X such that B C K(X) and Int B # 0
for each B € B. Assume that B is closed under finite unions. Let {i,|n € N} be
a Gs-diagonal sequence for Y. Let n € N. For each f € C(X,Y), take a finite
subfamily U(f) = {U1,- -+ , U} of U, such that f(X) € (U(f)). We show that there
exists a cover B(6) = {Bi,--- , By} of X satisfying: B(6) C B and

(1) G(f) € [ WX x Y\(B: x (Y\U))i = 1,--- , k}.

Since f is continuous, there exists a finite compact cover {C;|i = 1,--- ,k} of X
such that C; C f~1(U;) for each 4. Since C; is compact, there exists B; € B such
that C; € B; C f~1(U;). Thus we have B(6) satisfying (1). We write the right of

(1) by W(f,n) and set
W(n) = J{W(f,n)lf € C(X,V)}.

Then each W (n) is open in K(X x Y) and

(2)  GG(X,Y) [ YWn)ne N} N[ (X x Y, Int B x Y)|B € B}.

We show the converse of (2). Let L be any member of the right of (2). We note that
({z}xY)NL # D foreach z € X, because L € (X xY,Int BxY') for each B. For the
first case, assume that |[LN({z} xY)| > 2 for some z € X. Take (z,y1), (z,4) € L,
where y; # y2. Then there exists n € N such that yo & St(y;,U,). For this n,
L € W(n) means L € W(f,n) for some f € C(X,Y), which has the form by the

definition as follows:

W(f7 Tl) = ﬂ{<X X Y\(Bz X (Y\Uz)»'l = 17 e ak}7

where {Uy,--+,Ux} C Uy, {B1,---,Br} C B. For some i, z € B;. Thus L €

W (f,n) means L N (B; x (Y\U;)) = 0, but this is a contradiction.
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Hence we conclude that L has the form
L= {{z,g9(z))|z € X}

for some correspondence g : X — Y. To see g € C(X,Y), assume the contrary.
Since X is metrizable, there exists a sequence {z,|n € N} of points of X such
that =, — z but g(z,) 4 g(z) as n — oco. Note that n(L) is metrizable by
[Gru84, Theorem 2.13], where 7 : X x Y — Y is the projection. So, there exists a
subsequence {z,x)|k € N} such that g(z,4)) — v # g(z) as k — co. Take n such
that g(z) ¢ St(y,U,). But, on the other hand, since L € W(f,n) for some f, this is

a contradiction. Thus we have
G(Cu(X,Y)) = (\Wm) N[ J(X x V,Int B x ). O

We state the definition of being equicontinuous of Cy(X,Y).
Let F C C(X,Y), where X is a space and Y is a uniform space with the
uniformity p = {U,|le € A}. If for each @ € A and each p € X, there exists a

neighborhood N (p) of p such that

S(N(p)) C St(f(p), Ua)
for each f € F, then F is called equicontinuous, [Nag85, p. 282|.

Theorem 2.5.4. Let X be a compact space and Y be a uniform space. If C(X,Y) is
equicontinuous, then G(Cy(X,Y)) is a closed subspace of K(X xY), i.e., Cx(X,Y)

is embedded into a closed subspace of K(X xY).

Proof. We show that G(Ci(X,Y)) is closed in K(X x Y). Take L € K(X x
Y)I\G(Cr(X,Y)). Suppose |[L N ({z} x Y)| > 2 for some z € X. Take (z,1),
(x,y2) € L with y1 # yo. Let p = {Ua|a € A} be the uniformity of ¥ compatible
with Y. Then there exists U/ € p such that y; & St(ys,d) and let V be an open
cover of Y such that V € p and V** < U. For this V, there exists an open neighbor-

hood N(z) of z in X such thatf(N(z)) C St(f(z),V) for each f € C(X,Y). Take
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Vi, Vo € V such that y; € V4, y2 € V2. Then it is easy to see

~

O = (N(z) x Vi, N(z) x Vo, X xY)

is an open neighborhood of L in (X x Y) such that O N G(Cy(X,Y)) = 0. Next,
suppose |[LN({z}xY)| < 1for each z € X. If there exists x € X such that LN{{z} x
Y) = 0. Then it is easy to see that ((X\{z}) X Y) is an open neighborhood of L in
K(X x Y) missing G(Cr(X,Y)). For the last case, we suppose L = {{z,b(z))|z €
X}. Since L ¢ G(Ci(X,Y)), the correspondence b is not continuous. This means
that for some A C X there exists y € b(A)\b(A). Let y = b(z) with z € A. There
exists U € p and an open cover V € u such that St(y,U) Nb(A) = @ and V** < U.
Since Cy(X,Y) is equicontinuous, there exists an open neighborhood N(z) of z in
X such that f(N(z)) C St(f(z),V). Take V, V' € V such that y € V, b(zg) € V',
where 29 € N(z) N A. Then it is easy to see that (N(z) x V,N(z) x V!, X xY) is
an open neighborhood of L in (X x Y) missing G(Cr(X,Y)). This completes the

proof. O

Lemma 2.5.5. Let K be a compact cover of a space X such that K(X) < K. Then
Ce(X,Y) = [[{Ce(K,Y)|K € K}.

This follows by the same way as in the proof of (g)—(a) in [MN86, Theorem
3.2].

2.5.3 Mapping spaces and Moore spaces.

Let us recall the definition of a regular Gs-diagonal: A space X has a regular Gs-
diagonal if the diagonal set of X x X is a regular Gg-set, and equivalently, if there
exists a sequence {U(n)|n € N} of open covers of X such that if z £y, z, y € X,
then there exists n € N and open neighborhoods O, O’ of z, y in X, respectively,
such that St(O,U(n)) N O’ = @, [Zen72, Theorem 1|. In this characterization, we
can assume U(n + 1) < U(n), n € N, and this is assumed in the sequel without any

specification.
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Theorem 2.5.6. If X is a compact space and Y has a regular Gs-diagonal (Gs-
diagonal, Gj-diagonal), then Cp(X,Y) has a reqular Gs-diagonal (Gs-diagonal, G-

diagonal, respectively).

Proof. We show the case of a regular Gg-diagonal and the others are the same. By
the characterization, there exists a sequence {U(n)|n € N} of open covers of Y such
that if y # ¢/, y, ¥ € Y, then there exists n € N and open neighborhoods O, O’ of
y, ¥ in Y, respectively, such that St(O,U(n)) N O’ = B. We construct a sequence
{W(n)|n € N} of open covers of Cy,(X,Y’) by the following method () which is used

later frequently:

(x) Let n € Nand {6 = (K(6),U(6))|6 € A(n)} be the totality of pairs of subfam-
ilies KC(6), U(6) of K(X), U(n), respectively, such that K(6) = {Ky, -+, Ki}
is a finite cover of X and U(6) = {Uh,---,U:}. For each 6§ € A(n), let

W(6) =W(Ky, -, K; Uy, Uy)
and W(n) = {W(8)|6 € A(n)}.

Since X is compact, for each f € Cp(X,Y) and n € N, we can easily find § € A(n)
such that f € W(6). Thus each W(n) is an open cover of Cx(X,Y). Suppose
f#9 f, g € C(X,Y). Then f(zq) # g(zo) for some zy. By the property of
{U(n)}, there exists n € N and open neighborhoods O, O’ of f(zg), g(zy) in Y,

respectively, such that St(O,U(n)) N O’ = 0. It is easy to check that
St(W({zo}; 0), W(n)) NW({z0}; 0') = 0.
Hence by the characterization, Cy(X,Y) has a regular Gs-diagonal. O

Corollary 2.5.7. Let X be a compact space. If {U(n)|n € N} is a normal sequence
of open covers of Y, then {W(n)|n € N}, defined by the same method as (x) above,

15 also a normal sequence of open covers of Cr(X,Y).
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Proof. We show W(n+1)* < W(n) under the condition U (n+ 1)* < U(n). Suppose
W) NW(&) #£0, 6, &€ Aln+ 1), where

’C((S):{Kh"' ’KS}7 U((S):{Ul, 7Us}a
IC((S,) = {Lh T 7Lt}7 u(él) = {‘/1’ v aV;}a

UG UUE )y CcUn+1).
For each 1, take U] € U(n) such that St(U;,U(n+1)) C U]. Let &* = (K(6),{U7, -,
U'}) € A(n). Then we can show W (&) C W(6*). Indeed, if f € W(§'), then
f(L;) C V; for each j = 1,--- ,t. Since K(&') covers X, for each K; € K(8), let
N@) = {jILNnK; # 0,5 =1,---, s}, which implies
FE) | (@pli e N@} c [ Utvili e N} C U}
Therefore we have f € W(6*). Hence we have W(n + 1)* < W(n). d
For each 6 = (KC(6),U(8)) € A(n), n € N, we define
W8] = (X x Y\(K: x (Y\U)))|K: € K(8)}.

Then obviously W8] is an open subset of (X x Y) such that G(W(§)) = W[ N
G(Cr(X,Y)). For each n, Wn] = {W[8]|6 € A(n)} is an open cover of G(Cy(X,Y"))
in K(X xY).

Lemma 2.5.8. Let X be a compact space and let Y have a regular Gs-diagonal.
Then there exists a closed subspace Ky of K(X x Y) containing G(Cr(X,Y)) such
that if f € C(X,Y), L € Ko with L # G(f), then there exists n € N such that
L & St(G(f), Win])~.

Proof. Let
Ko={L e K(X xY)|rx(L) = X},
where mx : X XY — X is the projection. As easily checked, Ky is a closed

subspace of K(X x Y). We show that Ko, {Wn]} have the property. Let G(f) €
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G(Cy(X,Y)), L € Ko with G(f) # L. Then there exists (z,y) € L\G(f). For
the first case, suppose y ¢ f(X). Using compactnéss of f(X) and the property
of {U4(n)}, we can take n € N and an open neighborhood O of y in Y such that
St(f(X),U(n)) N O = 0. Then it is easy to see that (X x Y, X x O) is an open

neighborhood of L in (X x Y') such that
St(G(f),Wln])) (X x Y, X x O) = 0.

For the second case, suppose y € f(X). Then y # f(x). There exists disjoint open
neighborhoods O, O’ of f(z), y in Y, respectively. We take the open neighborhood
(Py X Qh, P, x Q) of G(f) in K(X xY) as follows:

(1) Qi=Y\{y}, Pi=f"1Q1) and P, x @ = f1(O") x O".

Since X is compact, there exists a closed cover {F}, Fo} of X such that § # F; C B
for each i = 1,2. By the property of {{{(n)}, for Fy, there exists ny € N and an

open neighborhood V(y) of ¥ in Y such that

(2) St(f (F1),U(no)) NV (y) = 0.

By virtue of (1) and (2), we can easily show the following:

(3) If G(f) € W[b], where § = (K(8),U(5)) € A(ng), K(6) = {K1,---, K},

U(‘S) = {U1,--- ,Us}, then for eachi=1,---,s

(f7HO) x V(y)) N (K; x Uy) = 0.

From (3), it follows that (f~1(O) x V(y), X x Y) is an open neighborhood of L in
K(X x Y) missing St(G(f), W[ng]). Hence we have L ¢ St(G(f), Wnel)~- O

Lemma 2.5.9. Let X' be a subspace of a wA-space X and suppose that there exists
a sequence {U(n)|n € N} of open covers of X' in X such that for eachz € X', y € X

with  # vy, there exists n € N such that y ¢ St(z,U(n))”. Then X' is a developable

space.
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Proof. Let {U'(n)|n € N} be a wA-sequence for X. Let V(n) = (U(n) AU (n))| X",
n € N. Without loss of generality, we can assume V(n + 1) < V(n) for each n. To
see that {V(n)} forms a development for X', let p € O € 7(X’). Assume that for
each n there exists p, € St(p, V(n))\O. Then {p,} has a cluster point p’. But by
the property of {U(n)}, we have p = p/, a contradiction. Hence St(p, V(n)) C O for

some 7. O

Theorem 2.5.10. Let X be a hemicompact space. ThenY is a Moore space with

a reqular Gs-diagonal if and only if so is Cr(X,Y).

Proof. 1f part follows easily from the fact that Moore spaces and regular Gs-diagonals
are hereditary and the fact Y < Cp(X,Y’). Only if part: Since Moore spaces and
regular Gs-diagonals are countably productive and hereditary, by Lemma 2.5.5, it
suffices to show it for a compact space X. Suppose that Y is a Moore space with
a regular Gs-diagonal and that X is a compact space. Since by Theorem 2.5.1
Cy(X,Y) has a regular Gs-diagonal, it suffices to show that Cy(X,Y) is a Moor
space. By Lemma 2.5.8, there exist a closed subspace Ky of (X x Y) containing
G(Cy(X,Y)) and a sequence {W|n||n € N} of open covers of G(Ci(X,Y)) in K(X x
Y) such that for each G(f) € G(Ci(X,Y)), L € Ky with G(f) # L, there exists
n € N such that L ¢ St(G(f),W[n])~. Let U(n) = W|n]|Ky, n € N. By [SM98,
Theorem 2.2], there exists a perfect mapping of (X xY’) onto K(Y') because K(X)
is compact. By [Miz95], K(Y) is a Moore space. Thus K is a wA-space. Using
Lemma 2.5.9 with Ky and {U(n)}, X' = G(Cx(X,Y)) (and hence Cx(X,Y)) is a

Moore space. O

Exercising our discussion used in the proof of Lemma 2.5.8, we can settle the
following proposition, the result of which is well known as the Arens theorem [Are46,

Theorem 7]. But this is the “topological” version of his proof.

Proposition 2.5.11. If X is a compact space and Y ts a metrizable space, then

Ce(X,Y) is metrizable.
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Proof. Let {U(n)|n € N} be a strong development for ¥ [Eng88, Theorem 5.4.2]
such that U(n + 1)* < U(n), n € N. Then by Corollary 2.5.7, W(n + 1)* < W(n),
n € N. So, for the metrizability of Cy(X,Y) it suffices to show that {W(n)} is a
development for Cy(X,Y). Let f € W(Ky, -, Ks; 01, ,0;s), where K; € K(X)
and O; € 7(Y) for each ¢. Since {U(n)} is a strong development, for each 7 there
exists n(z) € N such that St(f(K;),U(n(i))) C O;. Let n = max{n()|i =1,---,s}.
For this n, we can easily show St(f, W(n)) ¢ W(Ky,--+,Kg;O1,-+-,0q). a
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2.6 On being o-spaces of mapping spaces

We give an example of a o-space X such that C([0, 1], X) is not a o-space, and show
that if X is a compact metrizable space and the hyperspace K(Y) of Y is a o-space,

then C'(X,Y’) is a o-space.
2.6.1 Introduction

All spaces are assumed to be regular Ts. N always denotes all positive integers. For
spaces X, Y let C(X,Y) be the space of all continuous mappings of X into Y with
compact open topology, the base for which consists of all subsets of the following

form:
W(Ky, - Kn;Up,--- Un) = {f € C(X,Y) | f(K;) C U; for each i},

where for each i, K; € K(X), the set of all non-empty compact subsets of X,
U; € 7(Y), the topology of Y, and n € N. We give K(X) the finite topology, the
base for which consists of all subsets of the following form:
k
(Uy, - Uy) = {KEIC(X) ’ K C UUi and K NU; # @ for each i},
i=1
where Uy, -+ ,Uy € 7(X) and k € N.

In this section, we consider the heredity of the property of a space Y to C(X,Y)
when X is a compact metrizable space. Here, we give an example of a cosmic space
X such that C([0,1], X) is not a o-space. As a positive result, we settle that for
a compact metrizable space X and a space Y with K(Y) a o-space, C'(X,Y) is a
o-space.

As for undefined term, refer to [Grug4].

2.6.2 Results

Example 2.6.1. There exists a cosmic space X such that C'(/, X) is not a o-space,

where I = [0, 1].
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Construction. Let X = {(z,y) | v > 0} C R?, which is topologized by taking the
neighborhood base N (p) for each point pin X as follows: Forp = (z,y), v > 0, N(p)

is taken in the usual sense and for p = (z,0),
N(p) = {N(z;¢,6) | e >0, § > 1},
where
N(z;e,6) = {p}u{(z',y) e X |y < 8|z —z|, |2’ — 2| <&}

Then obviously X is a cosmic space. We show that C(I,X) is not a o-space.
Assume that C'(I, X) has a net [ J{F(n) | n € N}, where each F(n) is locally finite
in C(I, X). For each z € R, we define f, € C(I, X) as follows:

fot) = (t+z,0), te .
We fix €q, 6o such that £¢,8, > 1. For each z € R, let
N(z) = N(z;e0,60).
Since f, € W(I; N(z)), there exists F(z) € F(n(z)) such that
fz € Fz) C W(I; N(z)).
There exists ng € N such that
Intz(Cle({z | n(z) = no})) # 0,

from which we choose r. Then there exists a sequence {z,, | m € N} such that
lim,, o0 T, = 7 and for each m, Zy 1 < T, n(Tm) = ng and |r — z¢| < 1. We
can easily observe that F(z,) # F(zm) if n # m. It is easy to check that any
neighborhood of f, is intersects infinitely many members of {F(z.,) | m € N}. But
this is a contradiction because {F(z,,)} is locally finite in C'(I, X). Hence C(1, X)

is not a o-space. O
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Lemma 2.6.2. Letn € N. If X is a compact space and a space Y has a Gs(n)-
diagonal, then C(X,Y) has a Gs(n)-diagonal.

Proof. Let {U(n) | n € N} be a sequence of open covers of Y such that {y} =
O{S™(y,U(m)) | m € N} for each y € Y. For each f € C(X,Y) and m € N,
there exists a finite cover K(f,m) of X such that IC(f,m) C K(X) and for each

K € K(f,m), f(K) C U(K) for some U(K) € U(m). Let
W(f,m) = {W(K;U(K)) | K € K(f,m)}.
Then
W(m) = {W(f,m) | f € C(X,Y)}

is an open cover of C(X,Y). We show that {\W(m) | m € N} is a Gs(n)-diagonal
sequence for C(X,Y). Let f, g € C(X,Y) with f # g. Then there exist z € X and
m € N such that f(z) & S™(g(x),U(m)). It is easy to check that f & S™(g, W(m)).

This completes our task. O

Remark 4. Taking [Gru84, Theorem 4.15] and the previous lemma with m = 1 into
account, we can see that C'(I, X) in Example 2.6.1 is not a Y-space in the sense of

[Gru84, Definition 4.13.

In spite of the result in Corollary 2.3.8, we state the following with the direct

proof:

Theorem 2.6.3. Let X be a compact metrizable space and K(Y) a o-space. Then

C(X,Y) is a o-space.

Proof. We note that C'(X,Y) can be embedded into (X x Y) by the embedding

G such that
G(f) ={(z, f(z)) |z € X}, [ € C(X,Y).
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Thus, it suffices to show that G(C(X,Y)) is a o-space. Let B be a countable closed

net for X such that X € B. We define a subspace Ky of K(X x Y) as
Ko={LeK(XxY)|nx(L)= X},

where for any closed subset C' of X, m¢ : C xY — ( is the projection. It is
easy to see that Kg is closed in K(X x Y). By virtue of [SM98, Theorem 2.2] for
each B € B there exists a perfect mapping ¢p : K(B x Y) — K(Y) such that
¢p(K) = nz(K) for each K € K(B xY'), where )3 : Bx Y — Y is the projection.
Let v¥p : Ko — K(B x Y) be a mapping such that ¥g(L) = LN (B x Y) for each

L € K. By assumption, there exists a o-locally finite closed net F for K(Y). Set
H(B) = y5'¢5' (F), BEB
and

M= J{H(B)|BeB}

Then obviously H is a o-locally finite family of closed subsets of Ky. Moreover, H
has the following property:

Claim: For each f € C(X,Y) and L € Ky with G(f) # L, there exists HeH
with G(f) € H and a neighborhood W of L in Ky such that H W = §.

Proof of Claim: Suppose that we are given such G(f) and L. Though G(f) # L
means a few cases, it suffices to show the existence of H, W for the case that there
exists (z,y) € L\G(f). Then there exists an open neighborhood O; x Oy of (z,y)
in X x Y such that (O; x O3) NG(f) = 0. Take B € B such that z € B C O;. For

this B, we easily have

ee(¥e(L)) # ve(¥e(G(f)))

in KC(Y). Therefore there exist ' € F with ¢p(¥(G(f))) € F and a neighborhood

V of wg(1g(L)) in K(Y) such that F' NV = @. Then it is easy to see that
W =yp'es' (V), H=1v5'e5 (F)
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are the required sets.
Now, we show that G(C'(X,Y)) has a o-locally finite closed net. Let AH be the
totality of finite intersections of members of H. Then it is also o-locally finite in

’C(). Set
P = AH | G(C(X,Y)).

Then P is a o-locally finite family of closed subsets of G(C(X,Y)). We show that P
is a net for G(C'(X,Y)). Let G(f) € O, where O is open in Ko. If 3% (¢x (G(f))) C

O, then there exists F' € F such that
vx(G(f)) € F C ¢%(0).
Hence we have
G(f) € px (F)NG(C(X,Y)) c ONG(C(X,Y)),

and @;(1(13’) NG(C(X,Y)) € P. Suppose px (px(G(f))) ¢ O. By the claim, there
exists H € A'H and a neighborhood W of ¢3! (¢x (G(f)))\O such that H NW = 0.

There exists ' € F such that
ox(G(f) € F C px(WUO).
Then we have
G(f) € p(FYNHANG(C(X,Y)) c ONG(C(X,Y)),

and 3 (F) N HNG(C(X,Y)) € P. This completes our task. O

Corollary 2.6.4. If X is a compact metrizable space and Y is a Lasnev space, then

C(X,Y) ts a o-space.

Proof. By [Miz90, Theorem 4.12], if Y is a Lasnev space, then K(Y') is a o-space. [
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